Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 5, 2016

Ink transport modelling in Dip-Pen Nanolithography and Polymer Pen Lithography

  • Ainhoa Urtizberea , Michael Hirtz and Harald Fuchs
From the journal Nanofabrication


Dip-pen nanolithography (DPN) and Polymer pen lithography (PPL) are powerful lithography techniques being able to pattern a wide range of inks. Transport and surface spreading depend on the ink physicochemical properties, defining its diffusive and fluid character. Structure assembly on surface arises from a balance between the entanglement of the ink itself and the interaction with the substrate. According to the transport characteristics, different models have been proposed. In this article we review the common types of inks employed for patterning, the particular physicochemical characteristics that make them flow following different dynamics as well as the corresponding transport mechanisms and models that describe them.


Search in Google Scholar

[1] Binnig G., Quate C. F., Atomic Force Microscope, Phys. Rev. Lett., 1986, 56, 930–933. 10.1103/PhysRevLett.56.930Search in Google Scholar PubMed

Search in Google Scholar

[2] Jaschke M., Butt H.-J., Deposition of Organic Material by the Tip of a Scanning Force Microscope, Langmuir, 1995, 11, 1061–1064. 10.1021/la00004a004Search in Google Scholar

[3] Piner R. D., Zhu J., Xu F., Hong S., Mirkin C. A., ‘Dip-Pen’ Nanolithography, Science, 1999, 283, 661–663. 10.1126/science.283.5402.661Search in Google Scholar PubMed

[4] Brown K., Eichelsdoerfer D., Liao X., He S., Mirkin C., Material transport in dip-pen nanolithography, Front. Phys., 2013, 9, 385–397. 10.1007/s11467-013-0381-1Search in Google Scholar

[5] Urtizberea A., Hirtz M., A diffusive ink transport model for lipid dip-pen nanolithography, Nanoscale, 2015, 7, 15618–15634. 10.1039/C5NR04352BSearch in Google Scholar

[6] Wang Y., Giam L. R., Park M., Lenhert S., Fuchs H., Mirkin C. A., A Self-Correcting Inking Strategy for Cantilever Arrays Addressed by an Inkjet Printer and Used for Dip-Pen Nanolithography, Small, 2008, 4, 1666–1670. 10.1002/smll.200800770Search in Google Scholar PubMed PubMed Central

[7] Jang J. W., Smetana A., Stiles P., Multi-ink pattern generation by dip-pen nanolithography, Scanning, 2010, 32, 24–29. 10.1002/sca.20163Search in Google Scholar PubMed

[8] Weeks B. L., Noy A., Miller A. E., De Yoreo J. J., Effect of dissolution kinetics on feature size in dip-pen nanolithography., Phys. Rev. Lett., 2002, 88, 255505. 10.1103/PhysRevLett.88.255505Search in Google Scholar PubMed

[9] Sheehan P. E., Whitman L. J., Thiol diffusion and the role of humidity in ‘Dip Pen Nanolithography’., Phys. Rev. Lett., 2002, 88, 156104. 10.1103/PhysRevLett.88.156104Search in Google Scholar PubMed

[10] Jang J., Schatz G. C., Ratner M. A., Liquid meniscus condensation in dip-pen nanolithography, J. Chem. Phys., 2002, 116, 3875–3886. 10.1063/1.1446429Search in Google Scholar

[11] Cho N., Ryu S., Kim B., Schatz G. C., Hong S., Phase of molecular ink in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124, 024714. 10.1063/1.2147139Search in Google Scholar PubMed

[12] Rozhok S., Piner R., Mirkin C. A., Dip-Pen Nanolithography: What Controls Ink Transport?, J. Phys. Chem. B, 2003, 107, 751–757. 10.1021/jp021550hSearch in Google Scholar

[13] Chung S., Felts J. R., Wang D., King W. P., De Yoreo J. J., Temperature-dependence of ink transport during thermal dip-pen nanolithography, Appl. Phys. Lett., 2011, 99, 129–132. 10.1063/1.3657777Search in Google Scholar

[14] Sanedrin R. G., Amro N. A., Rendlen J., Nelson M., Temperature controlled dip-pen nanolithography, Nanotechnology, 2010, 21, 115302. 10.1088/0957-4484/21/11/115302Search in Google Scholar PubMed

[15] Sheehan P. E., Whitman L. J., King W. P., Nelson B. A., Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett., 2004, 85, 1589–1591. 10.1063/1.1785860Search in Google Scholar

[16] Jang J., Hong S., Schatz G. C., Ratner M. A., Self-assembly of ink molecules in dip-pen nanolithography: A diffusion model, J. Chem. Phys., 2001, 115, 2721. Search in Google Scholar

[17] Eichelsdoerfer D. J., Brown K. A., Mirkin C. A., Capillary bridge rupture in dip-pen nanolithography, Soft Matter, 2014, 10, 5603–5608. 10.1039/C4SM00997ESearch in Google Scholar PubMed

[18] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparative height measurements of dip-pen nanolithography-produced lipid membrane stacks with atomic force, fluorescence, and surface-enhanced ellipsometric contrast microscopy, Langmuir, 2011, 27, 11605–11608. 10.1021/la202703jSearch in Google Scholar PubMed

[19] Huo F., Zheng Z., Zheng G., Giam L. R., Zhang H., Mirkin C. A., Polymer Pen Lithography, Science, 2008, 321, 1658–1660. 10.1126/science.1162193Search in Google Scholar PubMed PubMed Central

[20] Hong J. M., Ozkeskin F. M., Zou J., A micromachined elastomeric tip array for contact printing with variable dot size and density, J. Micromechanics Microengineering, 2008, 18, 015003. 10.1088/0960-1317/18/1/015003Search in Google Scholar

[21] Liao X., Braunschweig A. B., Zheng Z., Mirkin C. A., Force- and time-dependent feature size and shape control in molecular printing via polymer-pen lithography., Small, 2010, 6, 1082–1086. 10.1002/smll.200901538Search in Google Scholar PubMed PubMed Central

[22] Brinkmann F., Hirtz M., Greiner A. M., Weschenfelder M., Waterkotte B., Bastmeyer M., Fuchs H., Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography, Small, 2013, 9, 3266–3275. 10.1002/smll.201203183Search in Google Scholar PubMed

[23] Saha S. K., Culpepper M. L., An Ink Transport Model for Prediction of Feature Size in Dip Pen Nanolithography, J. Phys. Chem. C, 2010, 114, 15364–15369. 10.1021/jp105855nSearch in Google Scholar

[24] Saha S. K. , Culpepper M. L., A surface diffusion model for Dip Pen Nanolithography line writing, Appl. Phys. Lett., 2010, 96, 243105. 10.1063/1.3454777Search in Google Scholar

[25] Nocedal I., Espinosa H., Kim K.-H., Ink Diffusion in Dip-Pen Nanolithography: A Study in the Development of Nano Fountain Probes, 2005, 2, 105. Search in Google Scholar

[26] Giam L. R., Wang Y., Mirkin C. A., Nanoscale molecular transport: The case of dip-pen nanolithography, J. Phys. Chem. A, 2009, 113, 3779–3782. 10.1021/jp809061eSearch in Google Scholar PubMed

[27] Piner R. D., Mirkin C. A., Effect of Water on Lateral Force Microscopy in Air, Langmuir, 1997, 13, 6864–6868. 10.1021/la970921wSearch in Google Scholar

[28] Schenk M., Fu M., Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy, J. Appl. Phys., 1998, 84, 4880–4884. 10.1063/1.368731Search in Google Scholar

[29] Weeks B. L., Vaughn M. W., Deyoreo J. J., Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir, 2005, 21, 8096–8098. 10.1021/la0512087Search in Google Scholar PubMed

[30] Stifter T., Marti O., Bhushan B., Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy, Phys. Rev. B, 2000, 62, 13667–13673. 10.1103/PhysRevB.62.13667Search in Google Scholar

[31] Kim H., Smit B., Jang J., Monte carlo study on the water meniscus condensation and capillary force in atomic force microscopy, J. Phys. Chem. C, 2012, 116, 21923–21931. 10.1021/jp307811qSearch in Google Scholar

[32] Xiao X., Qian L., Investigation of humidity-dependent capillary force, Langmuir, 2000, 16, 8153–8158. 10.1021/la000770oSearch in Google Scholar

[33] Sirghi L., Szoszkiewicz R., Riedo E., Volume of a nanoscale water bridge, Langmuir, 2006, 22, 1093–1098. 10.1021/la052167hSearch in Google Scholar PubMed

[34] Sedin D. L., Rowlen K. L., Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem., 2000, 72, 2183–2189. 10.1021/ac991198cSearch in Google Scholar PubMed

[35] He M., Szuchmacher Blum A., Aston D. E., Buenviaje C., Overney R. M., Luginbühl R., Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys., 2001, 114, 1355–1360. 10.1063/1.1331298Search in Google Scholar

[36] Colak A., Wormeester H., Zandvliet H. J. W., Poelsema B., Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip, Appl. Surf. Sci., 2012, 258, 6938–6942. 10.1016/j.apsusc.2012.03.138Search in Google Scholar

[37] Peterson E. J., Weeks B. L., De Yoreo J. J. , Schwartz P. V., Effect of environmental conditions on dip pen nanolithography of mercaptohexadecanoic acid, J. Phys. Chem. B, 2004, 108, 15206–15210. 10.1021/jp048177tSearch in Google Scholar

[38] Schwartz P. V., Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography, Langmuir, 2002, 18, 4041–4046. 10.1021/la011652jSearch in Google Scholar

[39] Weeks B. L., DeYoreo J. J., Dynamic meniscus growth at a scanning probe tip in contact with a gold substrate, J. Phys. Chem. B, 2006, 110, 10231–10233. 10.1021/jp0615914Search in Google Scholar PubMed

[40] Nafday O. A., Vaughn M. W., Weeks B. L., Evidence of meniscus interface transport in dip-pen nanolithography: An annular diffusion model, J. Chem. Phys., 2006, 125, 144703. 10.1063/1.2354487Search in Google Scholar PubMed

[41] Antoncik E., Dip-pen nanolithography: A simple diffusion model, Surf. Sci., 2005, 599, L369–L371. 10.1016/j.susc.2005.09.037Search in Google Scholar

[42] Haaheim J., Eby R., Nelson M., Fragala J., Rosner B., Zhang H., Athas G., Dip Pen Nanolithography (DPN): Process and instrument performance with NanoInk’s NSCRIPTOR system, Ultramicroscopy, 2005, 103, 117–132. 10.1016/j.ultramic.2004.11.015Search in Google Scholar PubMed

[43] Xu S., Liu G., Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly, Langmuir, 1997, 13, 127–129. 10.1021/la962029fSearch in Google Scholar

[44] Barczewski M., Walheim S., Heiler T., Blaszczyk A., Mayor M., Schimmel T., High aspect ratio constructive nanolithography with a photo-dimerizable molecule., Langmuir, 2010, 26, 3623–3628. 10.1021/la903028xSearch in Google Scholar PubMed

[45] Chen C., Zhou X., Xie Z., Gao T., Zheng Z., Construction of 3D Polymer Brushes by Dip-Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and High-Speed Patterning, Small, 2015, 11, 613–621. 10.1002/smll.201400642Search in Google Scholar PubMed

[46] Lee N. K., Hong S., Modeling collective behavior of molecules in nanoscale direct deposition processes, J. Chem. Phys., 2006, 124, 114711. 10.1063/1.2174960Search in Google Scholar PubMed

[47] Heo D. M., Yang M., Kim H., Saha L. C., Jang J., Tip Dependence of the Self-Assembly in Dip-Pen Nanolithography, J. Phys. Chem. C, 2009, 113, 13813–13818. 10.1021/jp903254pSearch in Google Scholar

[48] Manandhar P., Jang J., Schatz G. C., Ratner M. A., Hong S., Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 2003, 90, 115505. 10.1103/PhysRevLett.90.115505Search in Google Scholar PubMed

[49] O’Connell C. D., Higgins M. J., Marusic D., Moulton S. E., Wallace G. G., Liquid ink deposition from an atomic force microscope tip: deposition monitoring and control of feature size, Langmuir, 2014, 30, 2712–2721. 10.1021/la402936zSearch in Google Scholar PubMed

[50] Felts J. R., Somnath S., Ewoldt R. H., King W. P., Nanometerscale flow of molten polyethylene from a heated atomic force microscope tip, Nanotechnology, 2012, 23, 215301. 10.1088/0957-4484/23/21/215301Search in Google Scholar PubMed

[51] O’Connell C. D., Higgins M. J., Sullivan R. P., Moulton S. E., Wallace G. G., Ink-on-Probe Hydrodynamics in Atomic Force Microscope Deposition of Liquid Inks, Small, 2014, 10, 3717–3728. 10.1002/smll.201400390Search in Google Scholar PubMed

[52] Liu G., Zhou Y., Banga R. S., Boya R., Brown K. A., Chipre A. J., Nguyen S. T., Mirkin C. A., The role of viscosity on polymer ink transport in dip-pen nanolithography., Chem. Sci., 2013, 4, 2093–2099. 10.1039/c3sc50423aSearch in Google Scholar

[53] Binder H., The molecular architecture of lipid membranes - New insights from hydration-tuning infrared linear dichroism spectroscopy, Appl. Spectrosc. Rev., 2003, 38, 15–69. 10.1081/ASR-120017480Search in Google Scholar

[54] Hristova K., White S. H., Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration, Biophys. J., 1998, 74, 2419–2433. 10.1016/S0006-3495(98)77950-0Search in Google Scholar

[55] Wiener M. C., White S. H., Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups, Biophys. J., 1992, 61, 428–433. 10.1016/S0006-3495(92)81848-9Search in Google Scholar

[56] Filippov A., Orädd G., Lindblom G., Influence of cholesterol and water content on phospholipid lateral diffusion in bilayers, Langmuir, 2003, 19, 6397–6400. 10.1021/la034222xSearch in Google Scholar

[57] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C. A., Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns, Small, 2007, 3, 71–75. 10.1002/smll.200600431Search in Google Scholar PubMed

[58] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S., Xu M., et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275–279. 10.1038/nnano.2010.17Search in Google Scholar PubMed

[59] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., Vijayaraghavan A., Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography, Nat. Commun., 2013, 4, 2591. Search in Google Scholar

[60] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transfer during Dip‐Pen Nanolithography with Phospholipids, Small, 2011, 7, 2081–2086. 10.1002/smll.201100381Search in Google Scholar PubMed

[61] Förste A., Pfirrmann M., Sachs J., Gröger R., Walheim S., Brinkmann F., Hirtz M., Fuchs H., Schimmel T., Lipid droplets imaged by ultra large scale AFM: Prediction of the transferred ink volume in lipid-dip pen nanolithography, Nanotechnology, 2015, 26, 175303. 10.1088/0957-4484/26/17/175303Search in Google Scholar PubMed

[62] Lenhert S., Mirkin C. A., Fuchs H., In situ lipid dip-pen nanolithography under water, Scanning, 2010, 32, 15–23. 10.1002/sca.20166Search in Google Scholar PubMed

[63] Mohamad S., Noël O., Buraud J. L., Brotons G., Fedala Y., Ausserré D., Mechanism of lipid nanodrop spreading in a case of asymmetric wetting, Phys. Rev. Lett., 2012, 109, 248108. 10.1103/PhysRevLett.109.248108Search in Google Scholar PubMed

[64] Rädler J., Strey H., Sackmann E., Phenomenology and Kinetics of Lipid Bilayer Spreading on Hydrophilic Surfaces, Langmuir, 1995, 11, 4539–4548. 10.1021/la00011a058Search in Google Scholar

[65] Nissen J., Gritsch S., Wiegand G., Rädler J. O., Wetting of phospholipid membranes on hydrophilic surfaces - Concepts towards self-healing membranes, Eur. Phys. J. B, 1999, 10, 335–344. 10.1007/s100510050862Search in Google Scholar

[66] Sanii B., Parikh A. N., Surface-energy dependent spreading of lipid monolayers and bilayers, Soft Matter, 2007, 3, 974–977. 10.1039/b704827kSearch in Google Scholar PubMed

[67] Eichelsdoerfer D. J., Brown K. A., Wang M. X., Mirkin C. A., Role of Absorbed Solvent in Polymer Pen Lithography, J. Phys. Chem. B, 2013, 117, 16363–16368. 10.1021/jp410494gSearch in Google Scholar PubMed

[68] Xie Z., Shen Y., Zhou X., Yang Y., Tang Q., Miao Q., Su J., Wu H., Zheng Z., Polymer pen lithography using dual-elastomer tip arrays, Small, 2012, 8, 2664–2669. 10.1002/smll.201200849Search in Google Scholar PubMed

[69] Liao X., Braunschweig A. B., Mirkin C. A., ‘Force-feedback’ leveling of massively parallel arrays in polymer pen lithography, Nano Lett., 2010, 10, 1335–1340. 10.1021/nl904200tSearch in Google Scholar PubMed PubMed Central

[70] Zheng Z., Daniel W. L., Giam L. R., Huo F., Senesi A. J., Zheng G., Mirkin C. A., Multiplexed protein arrays enabled by polymer pen lithography: addressing the inking challenge, Angew. Chemie Int. Ed., 2009, 48, 7626–7629. 10.1002/anie.200902649Search in Google Scholar PubMed PubMed Central

[71] Zhong X., Bailey N. A., Schesing K. B., Bian S., Campos L. M., Braunschweig A. B., Materials for the preparation of polymer pen lithography tip arrays and a comparison of their printing properties, J. Polym. Sci. Part A Polym. Chem., 2013, 51, 1533–1539. 10.1002/pola.26513Search in Google Scholar

[72] Bian S., He J., Schesing K. B., Braunschweig A. B., Polymer Pen Lithography (PPL)-Induced Site-Specific Click Chemistry for the Formation of Functional Glycan Arrays, Small, 2012, 8, 2000–2005. 10.1002/smll.201102707Search in Google Scholar PubMed

[73] Xie Z., Zhou Y., Hedrick J. L., Chen P.-C., He S., Shahjamali M. M., Wang S., Zheng Z., Mirkin C. A., On-Tip Photo-Modulated Molecular Printing, Angew. Chem. Int. Ed. Engl., 2015, 54, 12894–12899. 10.1002/anie.201505150Search in Google Scholar PubMed

Received: 2015-11-23
Accepted: 2015-12-23
Published Online: 2016-2-5

© 2015 Ainhoa Urtizberea et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.2.2024 from
Scroll to top button