Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access June 28, 2019

Fabrication of Cell-Derived Biomimetic Drug Delivery System

  • Yi Zhou , Hong-Hui Wu , Yuan Ping EMAIL logo and Jian-Qing Gao EMAIL logo
From the journal Nanofabrication


Functional biomaterials that are capable of effectively carrying therapeutic agents and specifically delivering therapeutics to pathological sites have been widely investigated over decades. Recently, cellular carriers and cell derivative-based bio-hybrid delivery systems have drawn extensive attention as a promising branch of therapeutic delivery systems, owing to their low immunogenicity and intriguing biomimetic capabilities. Various approaches for the fabrication of these biomimetic carriers have been developed, and some products have already been commercialized as well. In this review, we summarized various processing methods for engineering cell-derived biomimetic drug delivery systems, and discussed their future outlooks.


[1] Petros, R. A., DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discovery, 2010, 9, 615-627.10.1038/nrd2591Search in Google Scholar

[2] Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release, 2001, 70, 1-20.10.1016/S0168-3659(00)00339-4Search in Google Scholar

[3] Song, C. X., Labhasetwar, V., Murphy, H., Qu, X., Humphrey, W.R., Shebuski, R.J., Levy, R.J., Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery, J. Control. Release, 1997, 43, 197-212.10.1016/S0168-3659(96)01484-8Search in Google Scholar

[4] Zhang, X., Dong, Y., Zeng, X., Liang, X., Li, X., Tao, W., Chen, H., Jiang, Y., Mei, L., Feng, S.S., The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment, Biomaterials, 2014, 35, 1932-1943.10.1016/j.biomaterials.2013.10.034Search in Google Scholar PubMed

[5] Moritake, S., Taira, S., Ichiyanagi, Y., Morone, N., Song, S. Y., Hatanaka, T., Yuasa, S., Setou, M., Functionalized nano-magnetic particles for an in vivo delivery system, J. Nanosci. Nanotechnol., 2007, 7, 937-944.10.1166/jnn.2007.216Search in Google Scholar PubMed

[6] Daniel, M. C., Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology, Chem. Rev., 2004, 35, 293-346.10.1021/cr030698+Search in Google Scholar PubMed

[7] Lu, A. H., Salabas, E. L., Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 2010, 46, 1222-1244.10.1002/anie.200602866Search in Google Scholar PubMed

[8] Xu, Q., Zhang, T., Wang, Q., Jiang, X., Li, A., Li, Y., Huang, T., Li, F., Hu, Y., Ling, D., Gao, J., Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells, Int. J. Pharm., 2018, 552, 334-452.10.1016/j.ijpharm.2018.10.023Search in Google Scholar PubMed

[9] Li, Q. P., Li, W., Di, H. X., Luo, L. H., Zhu, C. Q., Yang, J., Yin, X. Y., Yin, H., Gao, J. Q., Du, Y. Z., You, J., A photosensitive liposome with NIR light triggered doxorubicin release as a combined photodynamic-chemo therapy system, J. Control. Release, 2018, 277, 114-125.10.1016/j.jconrel.2018.02.001Search in Google Scholar PubMed

[10] Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discovery, 2005, 4, 145-160.10.1038/nrd1632Search in Google Scholar PubMed

[11] Lamichhane, N., Udayakumar, T. S., D’Souza, W. D., Raghavan, S. R., Polf, J., Mahmood, J. Liposomes: clinical applications and potential for image-guided drug delivery. Molecules, 2018, 23, 288.10.3390/molecules23020288Search in Google Scholar PubMed PubMed Central

[12] Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I., Minko, S., Emerging applications of stimuli-responsive polymer materials, Nat. Mater., 2010, 9, 101-113.10.1038/nmat2614Search in Google Scholar PubMed

[13] Chan, Y. C., Hsiao, M., Protease-activated nanomaterials for targeted cancer theranostics, Nanomedicine, 2017, 12, 2153-2159.10.2217/nnm-2017-0068Search in Google Scholar PubMed

[14] de la Rica, R., Aili, D., Stevens, M. M., Enzyme-responsive nanoparticles for drug release and diagnostics, Adv. Drug Deliv. Rev., 2012, 64, 967-978.10.1016/j.addr.2012.01.002Search in Google Scholar PubMed

[15] Zhu, L., Torchilin, V. P., Stimulus-responsive nanopreparations for tumor targeting, Integr. Biol., 2013, 5, 96-107.10.1039/c2ib20135fSearch in Google Scholar PubMed PubMed Central

[16] Jiang, H. L., Xing, L., Zhang, J. L., Zhou, T. J., He, Y.J., Cui, P. F., Gong, J. H., Sun, M. J., Lu, J. J., Huang, Z., Jin, L., A novel design of polynuclear co-delivery system for safe and efficient cancer therapy, Chem. Commun., 2018, 54, 8737.Search in Google Scholar

[17] Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J. S., Chin, S. F., Sherry, A. D., Boothman, D. A., Gao, J., Multifunctional polymeric micelles as cancer-targeted, mriultrasensitive drug delivery systems, Nano Lett., 2006, 6, 2427-2430.10.1021/nl061412uSearch in Google Scholar PubMed

[18] Lawrence, M. J., Rees, G. D., Microemulsion-based media as novel drug delivery systems, Adv. Drug Deliv. Rev., 2012, 64, 175-193.10.1016/j.addr.2012.09.018Search in Google Scholar

[19] Yoo, J. W., Irvine, D. J., Discher, D. E., Mitragotri, S., Bio-inspired, bioengineered and biomimetic drug delivery carriers, Nat. Rev. Drug Discovery, 2011, 10, 521-535.10.1038/nrd3499Search in Google Scholar PubMed

[20] Jokerst, J. V., Lobovkina, T., Zare, R. N., Gambhir, S. S., Nanoparticle PEGylation for imaging and therapy, Nanomedicine, 2011, 6, 715-728.10.2217/nnm.11.19Search in Google Scholar PubMed PubMed Central

[21] Magnani, M., DeLoach, J. R., The use of resealed erythrocytes as carriers and bioreactors, 1992, New York: Plenum Press.10.1007/978-1-4615-3030-5Search in Google Scholar

[22] Wang, C., Ye, Y. Q., Sun, W. J., Yu, J. C., Wang, J. Q., Lawrence, D. S., Buse, J. B., Gu, Z., Red blood cells for glucose-responsive insulin delivery, Adv. Mater., 2017, 29, 1606617.10.1002/adma.201606617Search in Google Scholar PubMed

[23] Choi, M. R., Stanton-Maxey, K. J., Stanley, J. K., Levin, C. S., Bardhan, R., Akin, D., Badve, S., Sturgis, J., Robinson, J. P., Bashir, R., Halas, N. J., Clare, S.E., A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors, Nano Lett., 2007, 7, 3759-3765.10.1021/nl072209hSearch in Google Scholar PubMed

[24] Tao, Y., Ning, M., Dou, H., A novel therapeutic system for malignant glioma: nanoformulation, pharmacokinetic, and anticancer properties of cell-nano-drug delivery, Nanomedicine, 2013, 9, 222-232.10.1016/j.nano.2012.10.006Search in Google Scholar PubMed

[25] Hamidi, M., Zarrin, A., Foroozesh, M., Mohammadi-Samani, S., Applications of carrier erythrocytes in delivery of biopharmaceuticals, J. Control. Release, 2007, 118, 145-160.10.1016/j.jconrel.2006.06.032Search in Google Scholar PubMed

[26] Doshi, N., Swiston, A. J., Gilbert, J. B., Alcaraz, M. L., Cohen, R. E., Rubner, M. F., Mitragotri, S., Cell-based drug delivery devices using phagocytosis-resistant backpacks, Adv. Mater., 2011, 23, H105-H109.10.1002/adma.201004074Search in Google Scholar PubMed

[27] Millan, C. G., Marinero, M. L. S., Castaneda, A. Z., Lanao, J. M., Drug, enzyme and peptide delivery using erythrocytes as carriers, J. Control. Release, 2004, 95, 27-49.10.1016/j.jconrel.2003.11.018Search in Google Scholar PubMed

[28] Zhang, Y., Zhang, J., Chen, W., Angsantikul, P., Spiekermann, K. A., Fang, R. H., Gao, W. W., Zhang, L. F., Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection, J. Control. Release, 2017, 263, 185-191.10.1016/j.jconrel.2017.01.016Search in Google Scholar PubMed PubMed Central

[29] Hu, C. M. J., Fang, R. H., Wang, K. C., Luk, B. T., Thamphiwatana, S., Dehaini, D., Nguyen, P., Angsantikul, P., Wen, C. H., Kroll, A. V., Carpenter, C., Ramesh, M., Qu, V., Patel, S. H., Zhu, J., Shi, W., Hofman, F. M., Chen, T. C., Gao, W. W., Zhang, K., Chien, S., Zhang, L. F., Nanoparticle biointerfacing by platelet membrane cloaking, Nature, 2015, 526, 118-121.10.1038/nature15373Search in Google Scholar PubMed PubMed Central

[30] Fang, R. H., Kroll, A. V., Gao, W., Zhang, L. F., Cell membrane coating nanotechnology, Advanced Materials, 2018, 30, 1706759.10.1002/adma.201706759Search in Google Scholar PubMed PubMed Central

[31] Tang, J., Shen, D., Caranasos, T. G., Wang, Z., Vandergriff, A. C., Allen, T. A., Hensley, M. T., Dinh, P. U., Cores, J., Li, T. S., Zhang, J. Y., Kan, Q. C., Cheng, K., Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome, Nat. Commun., 2017, 8, 13724.10.1038/ncomms13724Search in Google Scholar PubMed PubMed Central

[32] Tang, K., Zhang, Y., Zhang, H., Xu, P., Liu, J., Ma, J., Lv, M., Li, D., Katirai, F., Shen, G. X., Zhang, G., Feng, Z. H., Ye, D., Huang, B., Delivery of chemotherapeutic drugs in tumour cell-derived microparticles, Nat. Commun., 2012, 3, 1282.10.1038/ncomms2282Search in Google Scholar PubMed

[33] El-Andaloussi, S., Lee, Y., Lakhal-Littleton, S., Li, J., Seow, Y., Gardiner, C., Alvarez-Erviti, L., Sargent, I. L., Wood, M. J. A., Exosome-mediated delivery of siRNA in vitro and in vivo, Nat. Protoc., 2012, 7, 2112-2126.10.1038/nprot.2012.131Search in Google Scholar PubMed

[34] Gnopo, Y. M., Watkins, H. C., Stevenson, T. C., Delisa, M. P., Putnam, D., Designer outer membrane vesicles as immunomodulatory systems-Reprogramming bacteria for vaccine delivery, Adv. Drug Delivery Rev., 2017, 114, 132-142.10.1016/j.addr.2017.05.003Search in Google Scholar PubMed

[35] Mody, N., Dubey, S., Sharma, R., Agrawal, U., Vyas, S. P., Dendritic cell-based vaccine research against cancer, Expert Rev. Clin. Immunol., 2015, 11, 213-232.10.1586/1744666X.2015.987663Search in Google Scholar PubMed

[36] Gaudreault, R. C., Bellemare, B., Lacroix, J., Erythrocyte membrane-bound daunorubicin as a delivery system in anticancer treatment, Anticancer Res., 1989, 9, 1201-1205.Search in Google Scholar PubMed

[37] Liu, L., Zhang, S. X., Liao, W., Farhoodi, H. P., Wong, C. W., Chen, C. C.,, Ségaliny, A. I. Chacko, J. V., Nguyen, L. P., Lu, M., Polovin, G., Pone, E. J., Downing, T. L., Lawson, D. A., Digman, M. A., Zhao, W., Mechanoresponsive stem cells to target cancer metastases through biophysical cues, Sci. Transl. Med., 2017, 9, eaan2966.10.1126/scitranslmed.aan2966Search in Google Scholar PubMed PubMed Central

[38] Biagiotti, S., Paoletti, M. F., Fraternale, A., Rossi, L., Magnani, M., Drug delivery by red blood cells, IUBMB Life, 2011, 63, 621-631.10.1002/iub.478Search in Google Scholar PubMed

[39] Leuzzi, V., Micheli, R., D’agnano, D., Molinaro, A., Venturi, T., Plebani, A., Soresina, A., Marini, M., Leali, P. F., Quinti, I., Pietrogrande, M. C., Finocchi, A., Fazzi, E., Chessa, L., Magnani, M., Positive effect of erythrocyte-delivered dexamethasone in ataxia-telangiectasia, Neuroimmunol. Neuroinflammation, 2015, 2, e98.10.1212/NXI.0000000000000098Search in Google Scholar PubMed PubMed Central

[40] Beutler, E., Enzyme replacement in Gaucher disease, PLoS Med., 2004, 1, e21.10.1371/journal.pmed.0010021Search in Google Scholar PubMed PubMed Central

[41] Villa, C. H., Anselmo, A. C., Mitragotri, S., Muzykantov, V., Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems, Adv. Drug Delivery Rev., 2016, 106, 88-103.10.1016/j.addr.2016.02.007Search in Google Scholar PubMed PubMed Central

[42] Biagiotti, S., Rossi, L., Bianchi, M., Giacomini, E., Pierigè, F., Serafini, G., Conaldi, P. G., Magnani, M., Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs, J. Control. Release, 2011,154, 306-313.10.1016/j.jconrel.2011.05.024Search in Google Scholar PubMed

[43] Krantz, A., Red cell-mediated therapy: opportunities and challenges, Blood Cells Mol. Dis., 1997, 23, 58-68.10.1006/bcmd.1997.0119Search in Google Scholar PubMed

[44] Pierigè, F., Serafini, S., Rossi, L., Magnani, M., Cell-based drug delivery, Adv. Drug Delivery Rev., 2008, 60, 286-295.10.1016/j.addr.2007.08.029Search in Google Scholar PubMed

[45] Wu, Y. W., Goubran, H., Seghatchian, J., Burnouf, T., Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine, Transfusion and Apheresis Science, 2016, 54, 309-318.10.1016/j.transci.2016.04.013Search in Google Scholar PubMed

[46] Tan, S., Wu, T., Zhang, D., Zhang, Z., Cell or cell membrane-based drug delivery systems, Theranostics, 2015, 5, 863-881.10.7150/thno.11852Search in Google Scholar PubMed PubMed Central

[47] Baek, S. K., Makkouk, A. R., Krasieva, T., Sun, C. H., Madsen, S. J., Hirschberg, H., Photothermal treatment of glioma: an in vitro study of macrophage-mediated delivery of gold nanoshells, J. Neuro-Oncol., 2011, 104, 439-448.10.1007/s11060-010-0511-3Search in Google Scholar PubMed PubMed Central

[48] Brynskikh, A. M., Zhao, Y., Mosley, R. L., Li, S., Boska, M. D., Klyachko, N. L., Kabanov, A. V., Gendelman, H. E., Batrakova, E. V., Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease, Nanomedicine, 2010, 5, 379-396.10.2217/nnm.10.7Search in Google Scholar PubMed PubMed Central

[49] Hu, Q., Qian, C., Sun, W., Wang, J., Chen, Z., Bomba, H. N., Xin, H., Shen, Q., Gu, Z., Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus, Adv. Mater., 2016, 28, 9573-9580.10.1002/adma.201603463Search in Google Scholar PubMed PubMed Central

[50] Sarkar, S., Alam, M. A., Shaw, J., Dasgupta, A. K., Drug delivery using platelet cancer cell interaction, Pharm Res., 2013, 30, 2785-2794.10.1007/s11095-013-1097-1Search in Google Scholar PubMed

[51] Young, J. S., Morshed, R. A., Kim, J. W., Balyasnikova, I. V., Ahmed, A. U., Lesniak, M. S., Advances in stem cells, induced pluripotent stem cells, and engineered cells: delivery vehicles for anti-glioma therapy, Expert Opin. Drug Delivery, 2014, 11, 1733-1746.10.1517/17425247.2014.937420Search in Google Scholar PubMed

[52] Hu, Y. L., Fu, Y. H., Tabata, Y., Gao, J. Q., Mesenchymal stem cells: A promising targeted-delivery vehicle in cancer gene therapy, J. Control. Release, 2010, 147, 154-162.10.1016/j.jconrel.2010.05.015Search in Google Scholar PubMed

[53] Aboody, K. S., Brown, A., Rainov, N. G., Bower, K. A., Liu, S., Yang, W., Small, J. E., Herrlinger, U., Ourednik, V., Black, P. M., Breakefield, X. O., Snyder, E. Y., Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas, PNAS, 2000, 97, 12846-12851.10.1073/pnas.97.23.12846Search in Google Scholar PubMed PubMed Central

[54] Hata, N., Shinojima, N., Gumin, J., Yong, R., Marini, F., Andreeff, M., Lang, F. F., Platelet-derived growth factor BB Mediates the tropism of human mesenchymal stem cells for malignant gliomas, Neurosurgery, 2010, 66, 144-157.10.1227/01.NEU.0000363149.58885.2ESearch in Google Scholar PubMed PubMed Central

[55] Park, J.S., Suryaprakash, S., Lao, Y.H., Leong, K.W., Engineering mesenchymal stem cells for regenerative medicine and drug delivery, Methods, 2015, 84, 3-16.10.1016/j.ymeth.2015.03.002Search in Google Scholar PubMed PubMed Central

[56] Zhang, T. Y., Huang, B., Wu, H. B., Wu, J. H., Li, L. M., Li, Y. X., Gao, J. Q., Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice, J. Control. Release, 2015, 209, 260-271.10.1016/j.jconrel.2015.05.007Search in Google Scholar PubMed

[57] Sarkar, D., Vemula, P. K., Zhao, W., Gupta, A., Karnik, R., Karp, J. M., Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting, Biomaterials, 2010, 31, 5266-5274.10.1016/j.biomaterials.2010.03.006Search in Google Scholar PubMed PubMed Central

[58] Huang, B., Jiang, X. C., Zhang, T. Y., Hu, Y. L., Tabata, Y., Chen, Z., Pluchino, S., Gao, J. Q., Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia, Int. J. Pharm., 2017, 531, 90-100.10.1016/j.ijpharm.2017.08.073Search in Google Scholar PubMed

[59] Toussaint, B., Chauchet, X., Wang, Y., Polack, B., Gouëllec, A. L., Live-attenuated bacteria as a cancer vaccine vector, Expert Rev. Vaccines, 2013, 12, 1139-1154.10.1586/14760584.2013.836914Search in Google Scholar PubMed

[60] Yang, Y., Hou, J., Lin, Z., Zhuo, H., Chen, D., Zhang, X., Chen, Y., Sun, B., Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells, Cell. Mol. Immunol., 2014, 11, 184.10.1038/cmi.2013.64Search in Google Scholar PubMed PubMed Central

[61] Gardlik, R., Fruehauf, J. H., Bacterial vectors and delivery systems in cancer therapy, IDrugs, 2010, 13, 701-706.Search in Google Scholar PubMed

[62] Hu, Q., Wu, M., Fang, C., Cheng, C., Zhao, M., Fang, W., Chu, P. K., Ping, Y., Tang, G., Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy, Nano lett., 2015, 15, 2732-2739.10.1021/acs.nanolett.5b00570Search in Google Scholar PubMed

[63] Anselmo, A. C., Gilbert, J. B., Kumar, S., Gupta, V., Cohen, R. E., Rubner, M. F., Mitragotri, S., Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation, J. Control. Release, 2015, 199, 29-36.10.1016/j.jconrel.2014.11.027Search in Google Scholar PubMed

[64] Vasconcellos, F. C., Swiston, A. J., Beppu, M. M., Cohen, R. E., Rubner, M. F., Bioactive Polyelectrolyte Multilayers: Hyaluronic Acid Mediated B Lymphocyte Adhesion, Biomacromolecules, 2010, 11, 2407-2414.10.1021/bm100570rSearch in Google Scholar

[65] Muzykantov, V. R., Murciano, J. C., Taylor, R. P., Atochina, E. N., Herraez, A., Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin, Anal. Biochem., 1996, 241, 109-119.10.1006/abio.1996.0384Search in Google Scholar

[66] Muzykantov, V. R., Zaltsman, A. B., Smirnon, M. D., Samokhin, G. P., Morgan, B. P., Target-sensitive immunoerythrocytes: interaction of biotinylated red blood cells with immobilized avidin induces their lysis by complement, Biochim. Biophys. Acta., 1996, 1279, 137-143.10.1016/0005-2736(95)00260-XSearch in Google Scholar

[67] Muzykantov, V. R., Smirnov, M. D., Samokhin, G. P., Avidin attachment to biotinylated erythrocytes induces homologous lysis via the alternative pathway of complement, Blood, 1991, 78, 2611-2618.10.1182/blood.V78.10.2611.bloodjournal78102611Search in Google Scholar

[68] Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A., Irvine, D. J., Therapeutic cell engineering with surface-conjugated synthetic nanoparticles, Nat. Med., 2010, 16, 1035-1041.10.1038/nm.2198Search in Google Scholar

[69] Chambers, E., Mitragotri, S., Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation, Exp. Biol. Med., 2007, 232, 958-966.Search in Google Scholar

[70] Anselmo, A. C., Gupta, V., Zern, B. J., Pan, D., Zakrewsky, M., Muzykantov, V., Mitragotri, S., Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells, ACS Nano, 2013, 7, 11129-11137.10.1021/nn404853zSearch in Google Scholar PubMed

[71] Mai, T. D., d’Orlyé, F., Ménager, C., Varenne, A., Siaugue, J. M., Red blood cells decorated with functionalized core-shell magnetic nanoparticles: elucidation of the adsorption mechanism, Chem. Commun., 2013, 49, 5393-5395.10.1039/c3cc41513aSearch in Google Scholar

[72] Sun, Y., Su, J., Liu, G., Chen, J., Zhang, X., Zhang, R., Jiang, M., Qiu, M., Advances of blood cell-based drug delivery systems, Eur. J. Pharm. Sci., 2017, 96, 115-128.10.1016/j.ejps.2016.07.021Search in Google Scholar

[73] Tsong, T.Y., Electroporation of cell membranes, Biophys. J., 1991, 60, 297-306.10.1016/S0006-3495(91)82054-9Search in Google Scholar

[74] He, H., Ye, J., Wang, Y., Liu, Q., Chung, H. S., Kwon, Y. M., Shind, M. C., Lee, K., Yang, V. C., Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application, J. Control. Release, 2014, 176, 123-132.10.1016/j.jconrel.2013.12.019Search in Google Scholar PubMed PubMed Central

[75] Huang, Y., Jiang, Y., Wang, H., Wang, J., Shin, M. C., Byun, Y., Hee, H., Liang, Y,. Yang, V. C., Curb challenges of the “Trojan Horse” approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery, Adv. Drug Delivery Rev., 2013, 65, 1299-1315.10.1016/j.addr.2012.11.007Search in Google Scholar PubMed PubMed Central

[76] Huang, B., Tabata, Y., Gao, J. Q., Mesenchymal stem cells as therapeutic agents and potential targeted gene delivery vehicle for brain diseases, J. Control. Release, 2012, 162, 464-473.10.1016/j.jconrel.2012.07.034Search in Google Scholar PubMed

[77] He, C. X., Tabata, Y., Gao, J. Q., Non-viral gene delivery carrier and its three-dimensional transfection system, Int. J. Pharm., 2010, 386, 232-242.10.1016/j.ijpharm.2009.11.006Search in Google Scholar PubMed

[78] Fueyo, J., Gomez-Manzano, C., Alemany, R., Lee, P. S., McDonnell, T. J., Mitlianga, P., Shi, Y. X., Levin, V. A.,, Yung, W. K. A., Kyritsis, A. P., A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma in vivo, Oncogene, 2000, 19, 2-12.10.1038/sj.onc.1203251Search in Google Scholar PubMed

[79] Wu, Y., Mou, X., Wang, S., Liu, X. E., Sun, X., ING4 expressing oncolytic vaccinia virus promotes anti-tumor efficiency and synergizes with gemcitabine in pancreatic cancer, Oncotarget, 2017, 8, 82728-82739.10.18632/oncotarget.21095Search in Google Scholar PubMed PubMed Central

[80] Kim, J., Hall, R. R., Lesniak, M. S., Ahmed, A. U., Stem cell-based cell carrier for targeted oncolytic virotherapy: Translational opportunity and open questions, Viruses, 2015, 7, 6200-6217.10.3390/v7122921Search in Google Scholar PubMed PubMed Central

[81] Ferguson, S.D., Ahmed, A.U., Thaçi, B., Mercer, R.W., Lesniak, M.S., Crossing the boundaries: stem cells and gene therapy, Discovery Med., 2010, 9, 192-196.Search in Google Scholar

[82] Komarova, S., Kawakami, Y., Stoff-Khalili, M. A., Curiel, D. T., Pereboeva, L., Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses, Mol. Cancer Ther., 2006, 3, 755-766.10.1158/1535-7163.MCT-05-0334Search in Google Scholar PubMed

[83] Stoff-Khalili, M. A., Rivera, A. A., Mathis, J. M., Banerjee, N. S., Moon, A. S., Hess, A., Rocconi, R. P., Numnum, T. M., Everts, M., Chow, L. T., Douglas, J. T., Siegal, G. P., Zhu, Z. B., Bender, H. G., Dall, P., Stoff, A., Pereboeva, L., Curiel, D. T.,, Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma, Breast Cancer Res. Treat., 2007, 105, 157-167.10.1007/s10549-006-9449-8Search in Google Scholar PubMed

[84] Sonabend, A. M., Ulasov, I. V., Tyler, M. A., Rivera, A. A., Mathis, J. M., Lesniak, M. S., Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma, Stem Cell, 2008, 26, 831-841.10.1634/stemcells.2007-0758Search in Google Scholar PubMed

[85] Mader, E. K., Butler, G., Dowdy, S. C., Mariani, A., Knutson, K. L., Federspiel, M. J., Russell, S. J., Galanis, E., Dietz, A. B., Peng, K. W., Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer, J. transl. med., 2013, 11, 1-14.10.1186/1479-5876-11-20Search in Google Scholar PubMed PubMed Central

[86] Ong, H. T., Federspiel, M. J., Guo, C. M., Ooi, L. L., Russell, S. J., Peng, K. W., Hui, K. M. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth, J. Hepatol, 2013, 59, 999-1006.10.1016/j.jhep.2013.07.010Search in Google Scholar PubMed PubMed Central

[87] Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J. L., Fraser, C. C., Cavazzana-Calvo, M., Fischer, A., A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency, N. Engl. J. Med., 2003, 3, 255-256.10.1056/NEJM200301163480314Search in Google Scholar PubMed

[88] Hu, Y. L., Huang, B., Zhang, T. Y., Miao, P. H., Tang, G. P., Tabata, Y., Gao, J. Q. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection, Mol. Pharmaceutics, 2012, 2698-2709.10.1021/mp300254sSearch in Google Scholar PubMed

[89] Hu, Y. L., Miao, P. H., Huang, B., Zhang, T. Y., Hu, Z. J., Tabata, Y., Gao, J. Q., Reversal of tumor growth by gene modification of mesenchymal stem cells using spermine-pullulan/DNA nanoparticles, J. Biomed. Nanotechnol., 2014, 10, 299-308.10.1166/jbn.2014.1712Search in Google Scholar PubMed

[90] Akimoto, K., Kimura, K., Nagano, M., Takano, S., To’a Salazar, G., Yamashita, T., Ohneda, O., Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation, Stem Cells and Dev., 2013, 22, 1370-1386.10.1089/scd.2012.0486Search in Google Scholar PubMed PubMed Central

[91] Bugaj, L. J., Schaffer, D.V., Bringing next-generation therapeutics to the clinic through synthetic biology, Curr. Opin. Chem. Biol., 2012, 16, 355-361.10.1016/j.cbpa.2012.04.009Search in Google Scholar PubMed

[92] Ahmed, A. U., Tyler, M. A., Thaci, B., Alexiades, N. G., Han, Y., Ulasov, I. V., Lesniak, M. S., A Comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma, Mol. Pharmaceutics, 2011, 8, 1559-1572.10.1021/mp200161fSearch in Google Scholar PubMed PubMed Central

[93] Ahmed, A. U., Thaci, B., Tobias, A. L., Auffinger, B., Zhang, L., Cheng, Y., Kim, C. K., Yunis,C., Han, Y., Alexiades, N. G., Fan, X., Aboody, K. S.,, Lesniak, M. S., A preclinical evaluation of neural stem cell-based cell carrier for targeted antiglioma oncolytic virotherapy, J. Natl. Cancer Inst., 2013, 105, 968-977.10.1093/jnci/djt141Search in Google Scholar PubMed PubMed Central

[94] Ahmed, A. U., Thaci, B., Alexiades, N. G., Han, Y., Qian, S., Liu, F., Balyasnikova, I. V., Ulasov, I. Y., Aboody, K. S., Lesniak, M. S., Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma, Mol. Tharapy, 2011, 19, 1714-1726.10.1038/mt.2011.100Search in Google Scholar PubMed PubMed Central

[95] Jiang, X. C., Gao, J. Q., Exosomes as novel bio-carriers for gene and drug delivery, Int. J. Pharm., 2017, 521, 167-175.10.1016/j.ijpharm.2017.02.038Search in Google Scholar PubMed

[96] Vader, P., Mol, E.A., Pasterkamp, G., Schiffelers, R.M., Extracellular vesicles for drug delivery, Adv. Drug Delivery Rev., 2016, 106, 148-156.10.1016/j.addr.2016.02.006Search in Google Scholar

[97] Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., Turbide, C., Vesicle formation during reticulocyte maturation, J. Biol. Chem., 1987, 262, 9412-9420.10.1016/S0021-9258(18)48095-7Search in Google Scholar

[98] Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S. K., Choo, A., Chen, T. S., Salto-Tellezg, M., Timmers, L., Lee, C. N., Oakley, R. M. E., Pasterkamp, G., de Kleijn, D. P. V., Lim, S. K., Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury, Stem Cell Res., 2010, 4, 214-222.10.1016/j.scr.2009.12.003Search in Google Scholar PubMed

[99] Lai, R. C., Chen, T. S., Lim, S. K., Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease, Regener. Med., 2011, 6, 481-492.10.2217/rme.11.35Search in Google Scholar PubMed

[100] Kim, S. H., Bianco, N., Menon, R., Lechman, E. R., Shufesky, W. J., Morelli, A. E., Robbins, P. D., Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive, Mol. Ther., 2006, 13, 289-300.10.1016/j.ymthe.2005.09.015Search in Google Scholar PubMed

[101] Cho, J. A., Yeo, D. J., Son, H. Y., Kim, H. W., Jung, D. S., Ko, J. K., Koh, J. S., Kim, Y. N., Kim, C. W., Exosomes: A new delivery system for tumor antigens in cancer immunotherapy, Int. J. Cancer, 2005, 114, 613-622.10.1002/ijc.20757Search in Google Scholar PubMed

[102] Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., Wei, J., Nie, G., A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy, Biomaterials, 2014, 35, 2383-2390.10.1016/j.biomaterials.2013.11.083Search in Google Scholar PubMed

[103] Dai, S., Wei, D., Wu, Z., Zhou, X., Wei, X., Huang, H., Li, G., Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer, Mol. Ther., 2008, 16, 782-790.10.1038/mt.2008.1Search in Google Scholar PubMed PubMed Central

[104] Escudier, B., Dorval, T., Chaput, N., André, F., Caby, M. P., Novault, S., Flament, C., Leboulaire, C., Borg, C., Amigorena, S., Boccaccio, C., Bonnerot, C., Dhellin, O., Movassagh, M., Piperno, S., Robert, C., Serra, V., Valente, N., Le Pecq, J. B., Spatz, A., Lantz, O., Tursz, T., Angevin E., Zitvogel, L., Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial, J. Transl. Med., 2005, 3, 10.10.1186/1479-5876-3-10Search in Google Scholar PubMed PubMed Central

[105] Morse, M. A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T. M., Valente, N., Shreeniwas, R., Sutton, M. A., Delcayre, A., Hsu, D. H., Le Pecq J. B., Lyerly, H. K., A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer, J. Transl. Med., 2005, 3, 9.10.1186/1479-5876-3-9Search in Google Scholar PubMed PubMed Central

[106] Théry, C., Amigorena, S., Raposo, G., Clayton, A., Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol., 2006, 30, 3-99.10.1002/0471143030.cb0322s30Search in Google Scholar

[107] Taylor, D. D., Shah, S., Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes, Methods, 2015, 3, 3-10.10.1016/j.ymeth.2015.02.019Search in Google Scholar

[108] Böing, A. N., Van Der Pol, E., Grootemaat, A. E., Coumans, F. A., Sturk, A., Nieuwland, R., Single-step isolation of extracellular vesicles by size-exclusion chromatography, J. Extracell. Vesicles, 2014, 3, 23430.10.3402/jev.v3.23430Search in Google Scholar

[109] Heinemann, M. L., Ilmer, M., Silva, L. P., Hawke, D. H., Recio, A., Vorontsova, M. A., Alt, E., Vykoukal, J., Benchtop isolation and characterization of functional exosomes by sequential filtration, J. Chromatogr. A, 2014, 1371, 125-135.10.1016/j.chroma.2014.10.026Search in Google Scholar

[110] Tauro, B. J., Greening, D. W., Mathias, R. A., Ji, H., Mathivanan, S., Scott, A. M., Simpson, R. J., Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating, Methods, 2012, 56, 293-304.10.1016/j.ymeth.2012.01.002Search in Google Scholar

[111] Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M. D., Hobot, J. A., Newman, G. R., Jasani, B., Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry, J. Immunol. Methods, 2001, 247, 163-174.10.1016/S0022-1759(00)00321-5Search in Google Scholar

[112] Ashcroft, B. A., De Sonneville, J., Yuana, Y., Osanto, S., Bertina, R., Kuil, M. E., Oosterkamp, T.H., Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed. Microdevices, 2012, 14, 641-649.10.1007/s10544-012-9642-ySearch in Google Scholar PubMed PubMed Central

[113] Lobb, R. J., Becker, M., Wen Wen, S., Wong, C. S., Wiegmans, A. P., Leimgruber, A., Möller, A., Optimized exosome isolation protocol for cell culture supernatant and human plasma, J. Extracell. Vesicles, 2015, 4, 27031.10.3402/jev.v4.27031Search in Google Scholar PubMed PubMed Central

[114] Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., Ochiya, T., Secretory mechanisms and intercellular transfer of microRNAs in living cells, J. Biol. Chem., 2010, 285, 17442-17452.10.1074/jbc.M110.107821Search in Google Scholar PubMed PubMed Central

[115] Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., Wood, M. J., Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat. biotechol., 2011, 29, 341-347.10.1038/nbt.1807Search in Google Scholar PubMed

[116] Smith, V. L., Jackson, L., Schorey, J. S., Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes, J. Immunology, 2015, 195, 2722-2730.10.4049/jimmunol.1403186Search in Google Scholar PubMed PubMed Central

[117] Pascucci, L., Coccè, V., Bonomi, A., Ami, D., Ceccarelli, P., Ciusani, E., Viganò, L., Locatelli, A., Sisto, F., Doglia, S. M., Paratie, E., Bernardo, M. E., Muraca, M., Alessandri, G., Bondiolotti, G., Pessina, A., Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery, J. Control. Release, 2014, 192, 262-270.10.1016/j.jconrel.2014.07.042Search in Google Scholar PubMed

[118] Sun, D., Zhuang, X., Xiang, X., Liu, Y., Zhang, S., Liu, C., Barnes, S., Grizzle, W., Miller, D., Zhang, H. G., A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes, Mol. Ther., 2010, 18, 1606-1614.10.1038/mt.2010.105Search in Google Scholar PubMed PubMed Central

[119] Saari, H., Lazaro-Ibanez, E., Viitala, T., Vuorimaa-Laukkanen, E., Siljander, P., Yliperttula, M., Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells, J. Control. Release, 2015, 220, 727-737.10.1016/j.jconrel.2015.09.031Search in Google Scholar PubMed

[120] Lee, J., Kim, J., Jeong, M., Lee, H., Goh, U., Kim, H., Kim, B., Park, J. H., Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration, Nano lett., 2015, 15, 2938-2944.10.1021/nl5047494Search in Google Scholar PubMed

[121] Kim, M. S., Haney, M. J., Zhao, Y., Mahajan, V., Deygen, I., Klyachko, N. L.,Inskoe, E., Piroyan, A., Sokolsky, M., Okolie, O., Hingtgen, S. D., Kabanov, A. V., Batrakova, E. V., Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells, Nanomedicine, 2016, 12, 655-664.10.1016/j.nano.2015.10.012Search in Google Scholar PubMed PubMed Central

[122] Haney, M. J., Klyachko, N. L., Zhao, Y., Gupta, R., Plotnikova, E. G., He, Z., Patel, T., Piroyan, A., Sokolsky, M., Kabanov, A. V., Batrakova, E. V., Exosomes as drug delivery vehicles for Parkinson’s disease therapy, J. Control. Release, 2015, 207, 18-30.10.1016/j.jconrel.2015.03.033Search in Google Scholar PubMed PubMed Central

[123] Fuhrmann, G., Serio, A., Mazo, M., Nair, R., Stevens, M. M., Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins, J. Control. Release, 2015, 205, 35-44.10.1016/j.jconrel.2014.11.029Search in Google Scholar PubMed

[124] Ohno, S. I., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., Ohgi, T., Ochiya, T, Gotoh, N., Kuroda, M., Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells, Mol. Ther., 2013, 21, 185-191.10.1038/mt.2012.180Search in Google Scholar PubMed PubMed Central

[125] Hood, J. L., Scott, M. J., Wickline, S. A., Maximizing exosome colloidal stability following electroporation, Anal. Biochem., 2014, 448, 41-49.10.1016/j.ab.2013.12.001Search in Google Scholar PubMed PubMed Central

[126] Gujrati, V., Kim, S., Kim, S. H., Min, J. J., Choy, H. E., Kim, S. C., Jon, S., Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy, ACS Nano, 2014, 8, 1525-1537.10.1021/nn405724xSearch in Google Scholar PubMed

[127] Olsen, I., Amano, A., Outer membrane vesicles-offensive weapons or good Samaritans? J. Oral Microbiol., 2015, 7, 27468.10.3402/jom.v7.27468Search in Google Scholar PubMed PubMed Central

[128] Huang, W., Wang, S., Yao, Y., Xia, Y., Yang, X., Li, K., Sun, P., Liu, C, Sun, W., Bai, H., Chu, X., Li, Y., Ma, Y., Employing Escherichia coli-derived outer membrane vesicles as an antigen delivery platform elicits protective immunity against Acinetobacter baumannii infection, Sci. Rep., 2016, 6, 37242.10.1038/srep37242Search in Google Scholar PubMed PubMed Central

[129] Gerritzen, M. J., Martens, D. E., Wijffels, R. H., van der Pol,L., Stork, M., Bioengineering bacterial outer membrane vesicles as vaccine platform, Biotechnol. Adv., 2017, 35, 565-574.10.1016/j.biotechadv.2017.05.003Search in Google Scholar PubMed

[130] Gujrati, V. B., Jon, S., Bioengineered bacterial outer membrane vesicles: what is their potential in cancer therapy? Nanomedicine, 2014, 9, 933-935.10.2217/nnm.14.56Search in Google Scholar PubMed

[131] Leo, V., Michiel, S., Peter, V., Outer membrane vesicles as platform vaccine technology, Biotechnol. J., 2015, 10, 1689-1706.10.1002/biot.201400395Search in Google Scholar PubMed PubMed Central

[132] van de Waterbeemd, B., Streefland, M., Van der Ley, P., Zomer, B., Van Dijken, H., Martens, D., Wijffels, R., Van der Pol, L., Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process, Vaccine, 2010, 28, 4810-4816.10.1016/j.vaccine.2010.04.082Search in Google Scholar PubMed

[133] van de Waterbeemd, B., Streefland, M., van Keulen, L., van den IJssel, J., de Haan, A., Eppink, M. H., van der Pol, L. A., Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis, Vaccine, 2012, 30, 3683-3690.10.1016/j.vaccine.2012.03.028Search in Google Scholar PubMed

[134] Kim, S. H., Kim, K. S., Lee, S. R., Kim, E., Kim, M. S., Lee, E. Y., Gho, Y. S., Kim, J. W., Bishop, R. E., Chang, K. T., Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles, Biochim. Biophys. Acta, Biomembr., 2009, 1788, 2150-2159.10.1016/j.bbamem.2009.08.001Search in Google Scholar PubMed PubMed Central

[135] Chutkan, H., MacDonald, I., Manning, A., Kuehn, M. J., Quantitative and qualitative preparations of bacterial outer membrane vesicles, Methods Mol. Biol., 2013, 966, 259-272.10.1007/978-1-62703-245-2_16Search in Google Scholar PubMed PubMed Central

[136] Zollinger, W. D., Mandrell, R. E., Griffiss, J. M., Altieri, P., Berman, S., Complex of meningococcal group B polysaccharide and type 2 outer membrane protein immunogenic in man, J. Clin. Invest., 1979, 63, 836-848.10.1172/JCI109383Search in Google Scholar

[137] Rappazzo, C. G., Watkins, H. C., Guarino, C. M., Chau, A., Lopez, J. L., DeLisa, M. P., Leifer, C. A.,Whittaker, G. R., Putnam, D., Recombinant M2e outer membrane vesicle vaccines protect against lethal influenza A challenge in BALB/c mice, Vaccine, 2016, 34, 1252-1258.10.1016/j.vaccine.2016.01.028Search in Google Scholar

[138] Chen, L., Valentine, J. L., Huang, C. J., Endicott, C. E., Moeller, T. D., Rasmussen, J. A., Fletcher, J. R., Boll, J. M., Rosenthal, J. A., Dobruchowska, J., Wang, Z., Heiss, C., Azadi, P., Putnam, D., Trent, M. S., Jones, B. D., DeLisa, M. P., Outer membrane vesicles displaying engineered glycotopes elicit protective antibodies, PNAS, 2015, 113, E3609-E3618.10.1073/pnas.1518311113Search in Google Scholar

[139] Steer, M. L., Baldwin, C., Levitzki, A., Preparation and characterization of hormone-sensitive, resealed etythrocyte ghosts, J. Biol. Chem., 1976, 251, 4930-4935.10.1016/S0021-9258(17)33204-0Search in Google Scholar

[140] Lejeune, A., Moorjani, M., Gicquaud, C., Lacroix, J., Nanoerythrosome, a new derivative of erythrocyte ghost: Preparation and antineoplastic potential as drug carrier for Daunorubicin, Anticancer Res., 1994, 14, 915-919.Search in Google Scholar

[141] Agnihotri, J., Gajbhiye, V., Kumar, N., Engineered cellular carrier nanoerythrosomes as potential targeting vectors for anti-malarial drug, Asian J. Pharm., 2010, 4, 116-120.10.4103/0973-8398.68462Search in Google Scholar

[142] Agnihotri, J., Saraf, S., Singh, S., Bigoniya, P., Development and evaluation of anti-malarial bio-conjugates: artesunate-loaded nanoerythrosomes, Drug Deliv. Transl. Res., 2015, 5, 489-497.10.1007/s13346-015-0246-ySearch in Google Scholar

[143] Kumar, A., Verma, M., Jha, K. K., Resealed erythrocytes as a carrier for drug targeting: a review, Pharma Innovation, 2011, 1, 1387-1403.Search in Google Scholar

[144] Payghan, S. A., Nanoerythrosomes: Engineered erythrocytes as a novel carrier for the targeted drug delivery, Asian J. Pharm., 2016, 10, s223-s233.Search in Google Scholar

[145] Deák, R., Mihály, J., Szigyártó, I. C., Wacha, A., Lelkes, G., Bóta, A., Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes, Colloids Surf., B, 2015, 135, 225-234.10.1016/j.colsurfb.2015.07.066Search in Google Scholar

[146] Ierardi, D. F., Pizauro, J. M., Ciancaglini, P., Erythrocyte ghost cell-alkaline phosphatase: construction and characterization of a vesicular system for use in biomineralization studies, Biochim. Biophys. Acta, 2002, 1567, 183-192.10.1016/S0005-2736(02)00615-6Search in Google Scholar

[147] Krishnamurthy, S., Gnanasammandhan, M. K., Xie, C., Huang, K., Cui, M. Y., Chan, J. M., Monocyte cell membrane-derived nanoghosts for targeted cancer therapy, Nanoscale, 2016, 8, 6981-6985.10.1039/C5NR07588BSearch in Google Scholar PubMed

[148] Kaneti, L., Bronshtein, T., Malkah Dayan, N., Kovregina, I., Letko Khait, N., Lupu-Haber, Y., Fliman, M., Schoen, B. W., Kaneti, G., Machluf, M., Nanoghosts as a novel natural nonviral gene delivery platform safely targeting multiple cancers, Nano Lett., 2016, 16, 1574-1582.10.1021/acs.nanolett.5b04237Search in Google Scholar PubMed

[149] Toledano Furman, N. E., Lupu-Haber, Y., Bronshtein, T., Kaneti, L., Letko, N., Weinstein, E., Baruch, L., Machluf, M., Reconstructed stem cell nanoghosts: a natural tumor targeting platform, Nano Lett., 2013, 13, 3248-3255.10.1021/nl401376wSearch in Google Scholar PubMed

[150] Yang, Z., Xie, J., Zhu, J., Kang, C., Chiang, C., Wang, X., Kuang, T., Chen, F., Chen, Z., Zhang, A.,Yu, B., Lee, R. J., Teng, L., Lee, J., Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation, J. Control. Release, 2016, 243, 160-171.10.1016/j.jconrel.2016.10.008Search in Google Scholar PubMed

[151] Li, J., Ai, Y., Wang, L., Bu, P., Sharkey, C. C., Wu, Q., Wun, B., Roy, S., King, M. R., Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles, Biomaterials, 2016, 76, 52-65.10.1016/j.biomaterials.2015.10.046Search in Google Scholar PubMed PubMed Central

[152] Luk, B. T., Fang, R. H., Hu, C. M. J., Copp, J. A., Thamphiwatana, S., Dehaini, D., Gao, W., Zhang, K., Li, S., Zhang, L., Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors, Theranostics, 2016, 6, 1004.Search in Google Scholar

[153] Fang, R. H., Hu, C. M. J., Luk, B. T., Gao, W., Copp, J. A., Tai, Y., O’Connor, D. E., Zhang, L., Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery, Nano Lett., 2014, 14, 2181-2188.10.1021/nl500618uSearch in Google Scholar PubMed PubMed Central

[154] Gao, W., Hu, C. M. J., Fang, R. H., Luk, B. T., Su, J., Zhang, L., Surface functionalization of gold nanoparticles with red blood cell membranes, Adv. Mater., 2013, 25, 3549-3553.10.1002/adma.201300638Search in Google Scholar PubMed PubMed Central

[155] Luk, B. T., Hu, C. M. J., Fang, R. H., Dehaini, D., Carpenter, C., Gao, W., Zhang, L., Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles, Nanoscale, 2014, 6, 2730-2737.10.1039/C3NR06371BSearch in Google Scholar PubMed PubMed Central

[156] Gao, W., Zhang, L., Coating nanoparticles with cell membranes for targeted drug delivery, J. Drug Targeting, 2015, 23, 619-629.10.3109/1061186X.2015.1052074Search in Google Scholar PubMed

[157] Gao, W., Fang, R. H., Thamphiwatana, S., Luk, B. T., Li, J., Angsantikul, P., Zhang, Q., Hu, C. M. J., Zhang, L., Modulating antibacterial immunity via bacterial membrane-coated nanoparticles, Nano Lett., 2015, 15, 1403-1409.10.1021/nl504798gSearch in Google Scholar PubMed PubMed Central

[158] Parodi, A., Quattrocchi, N., van De Ven, A. L., Chiappini, C., Evangelopoulos, M., Martinez, J. O., Brown, B. S., Khaled, S. Z., Yazdi, I. K., Enzo, M. V., Isenhart, L., Ferrari, M., Tasciotti, E., Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions, Nat. Nanotechnol., 2013, 8, 61-68.10.1038/nnano.2012.212Search in Google Scholar PubMed PubMed Central

[159] Zhang, J., Gao, W., Fang, R. H., Dong, A., Zhang, L., Synthesis of Nanogels via Cell Membrane-Templated Polymerization, Small, 2015, 11, 4309-4313.10.1002/smll.201500987Search in Google Scholar PubMed PubMed Central

[160] Hayashi, K., Ono, K., Suzuki, H., Sawada, M., Moriya, M., Sakamoto, W., Yogo, T., Electrosprayed synthesis of red-blood-cell-like particles with dual modality for magnetic resonance and fluorescence imaging, Small, 2010, 6, 2384-2391.10.1002/smll.201000399Search in Google Scholar PubMed

[161] Petros, R. A., Desimone, J. M., Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discovery, 2010, 9, 615-627.10.1038/nrd2591Search in Google Scholar PubMed

[162] Doshi, N., Orje, J. N., Molins, B., Smith, J. W., Mitragotri, S., Ruggeri, Z. M., Platelet mimetic particles for targeting thrombi in flowing blood, Adv. Mater., 2012, 24, 3864-3869.10.1002/adma.201200607Search in Google Scholar PubMed PubMed Central

[163] Doshi, N., Zahr, A. S., Bhaskar, S., Lahann, J., Mitragotri, S., Red blood cell-mimicking synthetic biomaterial particles, PNAS, 2009, 106, 21495-21499.10.1073/pnas.0907127106Search in Google Scholar PubMed PubMed Central

[164] Caschera, F., Noireaux, V., Integration of biological parts toward the synthesis of a minimal cell, Curr. Opin. Chem. Biol., 2014, 22, 85-91.10.1016/j.cbpa.2014.09.028Search in Google Scholar PubMed

[165] Lira, R. B., Dimova, R., Riske, K. A., Giant unilamellar vesicles formed by hybrid films of agarose and lipids display altered mechanical properties, Biophys. J., 2014, 107, 1609-1619.10.1016/j.bpj.2014.08.009Search in Google Scholar PubMed PubMed Central

[166] Martino, C., Demello, A. J. Droplet-based microfluidics for artificial cell generation: A brief review, Interface focus, 2016, 6, 20160011.10.1098/rsfs.2016.0011Search in Google Scholar PubMed PubMed Central

[167] Xu, S., Nie, Z., Seo, M., Lewis, P., Kumacheva, E., Stone, H. A., Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angew. Chem., 2010, 117, 734-738.10.1002/ange.200462226Search in Google Scholar

[168] Takinoue, M., Takeuchi, S., Droplet microfluidics for the study of artificial cells, Anal. Bioanal. Chem., 2011, 400, 1705-1716.10.1007/s00216-011-4984-5Search in Google Scholar PubMed

[169] Fazi, A., Mancini, U., Piatti, E., Accorsi, A., Magnani, M.. Xenobiotic detoxification by GSH-loaded erythrocytes, The Use of Resealed Erythrocytes as Carriers and Bioreactors, Springer US, 1992.10.1007/978-1-4615-3030-5_24Search in Google Scholar PubMed

[170] Chang, T. M. S., Microencapsulated adsorbent hemoperfusion for uremia, intoxication and hepatic failure, Kidney Int. Suppl., 1975, 7, S387-S392.Search in Google Scholar

[171] Soon-Shiong, P., Heintz, R. E., Merideth, N., Yao, Q. X., Yao, Z., Zheng, T., Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation, Lancet, 1994, 343, 950-951.10.1016/S0140-6736(94)90067-1Search in Google Scholar

[172] Weaver, J. D., Headen, D. M., Hunckler, M. D., Coronel, M. M., Stabler, C. L., García, Andrés J., Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation, Biomaterials, 2018, 172, 54-65.10.1016/j.biomaterials.2018.04.047Search in Google Scholar PubMed PubMed Central

[173] Bloch, J., Bachoud-Lévi, A.C., Déglon, N., Lefaucheur, J. P., Peschanski, M., Neuroprotective gene therapy for huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study, Human Gene Therapy, 2004, 15, 968-975.10.1089/hum.2004.15.968Search in Google Scholar PubMed

[174] Caschera, F., Noireaux, V., Integration of biological parts toward the synthesis of a minimal cell, Curr. Opin. Chem. Biol., 2014, 22, 85-91.10.1016/j.cbpa.2014.09.028Search in Google Scholar PubMed

[175] Densmore, D. M., Bhatia, S., Bio-design automation: software + biology + robots, Trends Biotechnol., 2014, 32, 111-113.10.1016/j.tibtech.2013.10.005Search in Google Scholar PubMed

[176] Murtas, G., Artificial assembly of a minimal cell, Mol. BioSyst., 2009, 5, 1292-1297.10.1039/b906541eSearch in Google Scholar PubMed

[177] Noireaux, V., Libchaber, A. A vesicle bioreactor as a step toward an artificial cell assembly. PNAS, 2004, 101, 17669-17674.10.1073/pnas.0408236101Search in Google Scholar PubMed PubMed Central

[178] Elani, Y., Trantidou, T., Wylie, D., Dekker, L., Polizzi, K., Law, R. V., Ces, O., Constructing vesicle-based artificial cells with embedded living cells as organelle-like modules, Scientific Reports, 2018, 8, 4564.Search in Google Scholar

Received: 2018-10-27
Accepted: 2019-03-08
Published Online: 2019-06-28
Published in Print: 2019-01-01

© 2019 Yi Zhou et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 Public License.

Downloaded on 7.12.2023 from
Scroll to top button