Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter May 21, 2015

Efficient forward second-harmonic generation from planar archimedean nanospirals

  • Roderick B. Davidson II , Jed I. Ziegler , Guillermo Vargas , Sergey M. Avanesyan , Yu Gong , Wayne Hess and Richard F. Haglund Jr.
From the journal Nanophotonics


The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6·10−9, 8·10−9 and 1.3·10−8 for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 μWper nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.


[1] R. W. Boyd, Nonlinear optics. (Academic press, 2003). Search in Google Scholar

[2] A. E. Grigorescu, C. W. Hagen, Nanotechnology 20(29), 292001 (2009). 10.1088/0957-4484/20/29/292001Search in Google Scholar PubMed

[3] H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. H. Sidiropoulos, M. Hong, R. F. Oulton, S. A. Maier, Nano Letters 12(9), 4997-5002 (2012) 10.1021/nl302665mSearch in Google Scholar PubMed

[4] R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, M. Kauranen, Opt. Express 19(27), 26866-26871 (2011). 10.1364/OE.19.026866Search in Google Scholar PubMed

[5] S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, M. Wegener, Phys. Rev. Lett. 109(1), 015502 (2012). 10.1103/PhysRevLett.109.015502Search in Google Scholar PubMed

[6] G. F. Walsh, L. Dal Negro, Nanoscale 5(17), 7795-7799 (2013). 10.1039/c3nr02145aSearch in Google Scholar PubMed

[7] Y. Zhang, N. K. Grady, C. Ayala-Orozco, N. J. Halas, Nano Letters 11(12), 5519-5523 (2011). 10.1021/nl2033602Search in Google Scholar PubMed

[8] F. Eftekhari, T. J. Davis, Phys. Rev. B 86(7), 075428 (2012). 10.1103/PhysRevB.86.075428Search in Google Scholar

[9] Y. Gorodetski, A. Drezet, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 110(20), 203906 (2013). 10.1103/PhysRevLett.110.203906Search in Google Scholar PubMed

[10] V. K. Valev, J. J. Baumberg, C. Sibilia, V. T. Erbiest, AdvancedMaterials 25(18), 2517-2534 (2013). 10.1002/adma.201205178Search in Google Scholar PubMed

[11] V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq,W. Gillijns, M. Ameloot, V. V. Moshchalkov, T. Verbiest, Nano Letters 9(11), 3945-3948 (2009). 10.1021/nl9021623Search in Google Scholar PubMed

[12] S. N. Volkov, K. Dolgaleva, R.W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, M. Kauranen, Phys. Rev. A 79(4) 043819, (2009). 10.1103/PhysRevA.79.043819Search in Google Scholar

[13] S. A. Maier, H. A. Atwater, Journal of Applied Physics 98(1) 011101, - (2005). 10.1063/1.1951057Search in Google Scholar

[14] A. Capretti, G. F.Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, L. Dal Negro, Opt. Express 20(14), 15797-15806 (2012). 10.1364/OE.20.015797Search in Google Scholar PubMed

[15] H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen, Nano Letters 12(2), 673-677 (2012). 10.1021/nl203524kSearch in Google Scholar PubMed

[16] J. I. Ziegler, R. F. Haglund, Nano Letters 10(8), 3013-3018 (2010). 10.1021/nl101475nSearch in Google Scholar PubMed

[17] J. I. Ziegler, R. F. Haglund, Plasmonics 8(2), 571-579 (2013). 10.1007/s11468-012-9436-3Search in Google Scholar

[18] D. Pestov, V. V. Lozovoy, M. Dantus, Opt. Express 17(16), 14351- 14361 (2009). 10.1364/OE.17.014351Search in Google Scholar PubMed

[19] A. M. Weiner, Rev. Sci. Instrum. 71(5), 1929-1960 (2000). 10.1063/1.1150614Search in Google Scholar

[20] M. D. McMahon, R. Lopez, R. F. Haglund, E. A. Ray, P. H. Bunton, Phys. Rev. B 73(4) 041401 (2006). 10.1103/PhysRevB.73.041401Search in Google Scholar

[21] B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, ACS Nano 7(7), 6321-6329, (2013). 10.1021/nn402370xSearch in Google Scholar PubMed

[22] M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Phys. Rev. X 2(3), 031010 (2012). 10.1103/PhysRevX.2.031010Search in Google Scholar

[23] A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J.Coles, N. I. Zheludev, Phys. Rev. Lett. 90(10), 107404 (2003). 10.1103/PhysRevLett.90.107404Search in Google Scholar PubMed

[24] M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Phys. Rev. Lett 95(22), 227401 (2005). 10.1103/PhysRevLett.95.227401Search in Google Scholar PubMed

[25] M. Ren, E. Plum, J. Xu, N. I. Zheludev, NatCommun 3, 833 (2012). 10.1038/ncomms1805Search in Google Scholar PubMed

[26] N. Calander, I. Gryczynski, Z. Gryczynski, Chemical Physics Letters 434(4–6), 326-330 (2007). 10.1016/j.cplett.2006.12.003Search in Google Scholar PubMed PubMed Central

[27] J. C. Heckel, G. Chumanov, The Journal of Physical Chemistry C 115(15), 7261-7269 (2011). 10.1021/jp111608sSearch in Google Scholar

[28] N. I. Z. Y. S. Kivshar, Nature Materials 11, 7 (2012). Search in Google Scholar

Published Online: 2015-5-21

© 2015 Roderick B. Davidson II et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.12.2023 from
Scroll to top button