Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter May 20, 2015

Nanowire Lasers

  • C. Couteau , A. Larrue , C. Wilhelm and C. Soci
From the journal Nanophotonics


We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.


[1] S. Adachi, Handbook of physical properties of semiconductors, Kluwer Acad. Publ. (2004). Search in Google Scholar

[2] R. Agarwal, C.J. Barrelet and C.M. Lieber, Lasing in single cadmiumsulfide nanowire optical cavities, Nano Lett. 5, 917 (2005). Search in Google Scholar

[3] L.C. Andreani, G. Panzarini and J.M. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: Theory, Phys. Rev. B 60, 13276 (1999). Search in Google Scholar

[4] S. Arafin, X. Liu and Z. Mi, Review of recent progress of III-nitride nanowire lasers, J. Nanophot. 7, 074599 (2013). Search in Google Scholar

[5] K.B. Arnardottir, O. Kyriienko, M.E. Portnoi and I.A. Shelykh, One-dimensional Van Hove polaritons, Phys. Rev. B 87, 125408 (2013). 10.1103/PhysRevB.87.125408Search in Google Scholar

[6] C.J. Barrelet, J. Bao, M. Loncar, H.G. Park, F. Capasso and C.M. Lieber, Hybrid single-nanowire photonic crystal and microresonator structures, Nano Lett. 6, 11 (2006). Search in Google Scholar

[7] D.J. Bergman and M.I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems, Phys. Rev. Lett. 90, 027402 (2003). Search in Google Scholar

[8] M.G.A. Bernard and G. Duraffourg, Laser Conditions in Semiconductors, Phys. Stat. Sol. b 1, 699 (1961). 10.1002/pssb.19610010703Search in Google Scholar

[9] P. Berini and I. De Leon, Surface plasmon–polariton amplifiers and lasers, Nat. Photonics 6, 16 (2012). 10.1038/nphoton.2011.285Search in Google Scholar

[10] Y. Bian, Z. Zheng, X. Zhao, L. Liu, J. Liu, J. Zhu and T. Zhou, Nanowire based hybrid plasmonic structures for low-threshold lasing at the subwavelength scale, Opt. Comm. 287, 245 (2013). Search in Google Scholar

[11] M.D. Birowosuto, A. Yokoo, H. Taniyama, E. Kuramochi, M. Takiguchi and M. Notomi, Design for ultrahigh-Q positioncontrolled nanocavities of single semiconductor nanowires in two-dimensional photonic crystals, J. Appl. Phys. 112, 113106 (2012). Search in Google Scholar

[12] M.D. Birowosuto, A. Yokoo, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi and M. Notomi, Movable high-Q nanoresontators realized by semiconductor nanowires on a Si photonic crystal platform, Nat. Mat. 13, 279 (2014). Search in Google Scholar

[13] B. Cao, Y. Jiang, W. Wang, L. Wang, M. Niu, W. Zheng, Y. Li and S.T. Lee, Synthesis and lasing properties of highly ordered CdS nanowire arrays, Adv. Func. Mat. 17, 1501 (2007). Search in Google Scholar

[14] L. Chen and E. Towe, Nanowire lasers with distributed-Braggreflector mirrors, Appl. Phys. Lett. 89, 053125 (2006). Search in Google Scholar

[15] R. Chen, T.T.D. Tran, K.W. Ng, W.S. Ko, L.C. Chuang, F.G. Sedgwick and C. Chang-Hasnain, Nanolasers grown on silicon, Nat. Photonics 5, 170-175 (2011). 10.1038/nphoton.2010.315Search in Google Scholar

[16] A.H. Chin, S. Vaddiraju, A.V. Maslov, C.Z. Ning, M.K. Sunkara and M. Meyyappan, Near-infrared semiconductor subwavelength-wire lasers, Appl. Phys. Lett. 88, 163115 (2006). Search in Google Scholar

[17] S. Chu, G.Wang,W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren and J. Liu, Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnology 6, 506 (2011). 10.1038/nnano.2011.97Search in Google Scholar PubMed

[18] J. Claudon, J. Bleuse, N. Singh Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.M. Gérard, A highly efficient single-photon source based on a quantum dot in a photonic nanowire, Nat. Photonics 4, 174 (2010). 10.1038/nphoton.2009.287xSearch in Google Scholar

[19] A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng and P. Bhattacharya, Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser, Phys. Rev. Lett. 107, 66405 (2011). Search in Google Scholar

[20] N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan and P. Yang, 25th anniversary article: semiconductor nanowires – synthesis, characterization, and applications, Adv. Mat. 26, 2137 (2013). Search in Google Scholar

[21] J.X. Ding, J.A. Zapien, W.W. Chen, Y. Lifshitz, S.T. Lee, and X.M. Meng, Lasing in ZnS nanowires grown on anodic aluminium oxide templates, Appl. Phys. Lett. 85, 2361 (2004). Search in Google Scholar

[22] Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng and L. Tong, Nanowires/microfiber hybrid structure multicolor laser, Opt. Exp. 17, 21813 (2009). Search in Google Scholar

[23] K. Domen, K. Kondo, A. Kuramata and T. Tanahashi, Gain analysis for surface emission by optical pumping of wurtzite GaN, Appl. Phys. Lett. 69, 94 (1996). Search in Google Scholar

[24] X. Duan, Y. Huang, R. Agarwal and C.M. Lieber, Single-nanowire electrically driven lasers, Nature 421, 241 (2003). 10.1038/nature01353Search in Google Scholar PubMed

[25] J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn and H. Kalt, Lasing dynamics in single ZnO nanorods, Opt. Exp. 16, 1125 (2008). Search in Google Scholar

[26] G. Feng, C. Yang and S. Zhou, Nanocrystalline Cr2+-doped ZnSe nanowires lasers, Nano Lett. 13, 272 (2013). Search in Google Scholar

[27] I. Friedler, C. Sauvan, J.P. Hugonin, P. Lalanne, J. Claudon and J.M. Gérard, Solid-state single photon sources: the nanowire antenna, Opt. Exp. 17, 2095 (2009). Search in Google Scholar

[28] A.S. Gadallah, K. Nomenyo, C. Couteau, D.J. Rogers and G. Lérondel, Stimulated emission from ZnO thin films with high optical gain and low loss, Appl. Phys. Lett. 102, 171105 (2013). Search in Google Scholar

[29] H. Gao, A. Fua, S.C. Andrews and P. Yang, Cleaved-coupled nanowire lasers, Proc. Nat. Ac. Sci. 110, 865 (2013). Search in Google Scholar

[30] Q. Gao, D. Saxena, F. Wang, L. Fu, S. Pokkapati, Y. Guo, L. Li, J. Wong-Leung, P. Caroff, H.H. Tan and C. Jagadish, Selective-area epitaxy of pure wurtzite InP nanowires: high quantumeflciency and room-temperature lasing, Nanolett. 14, 5206 (2014). Search in Google Scholar

[31] D.J. Gargas, M.E. Toimil-Molares and P. Yang, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy, J. Am. Chem. Soc. 131, 2125 (2009). Search in Google Scholar

[32] S. Gradečak, F. Qian, Y. Li, H.G. Park and C.M. Lieber, GaN nanowire laserswith lowlasing thresholds, Appl. Phys. Lett. 87, 173111 (2005). Search in Google Scholar

[33] A. Greytak, C.J. Barrelet, Y. Li and C.M. Lieber, Semiconductor nanowire laser and nanowire waveguide electro-optic modulator, Appl. Phys. Lett. 87, 151103 (2005). Search in Google Scholar

[34] N.S. Han, H.S. Shim, S. Lee, S.M. Park, M.Y. Choi and J.K. Song, Light-matter interaction and polarization of single ZnO nanowire lasers, Phys. Chem. Chem. Phys. 14, 10556 (2012). Search in Google Scholar

[35] A.L. Henneghien, B. Gayral, Y. Désières and J.M. Gérard, Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections, J. Opt. Soc. Am. B 26, 2396 (2009). 10.1364/JOSAB.26.002396Search in Google Scholar

[36] J. Heo, W. Guo and P. Bhattacharya, Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon, Appl. Phys. Lett. 98, 021110 (2011). Search in Google Scholar

[37] M.T. Hill, Y.S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P.J. Van Veldhoven, F.W.M. Van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. De Waardt, E.J. Geluk, S.H. Kwon, Y.H. Lee, R. Noetzel and M.K. Smit, Lasing in metallic-coated nanocavities, Nat. Photonics 1, 589 (2007). 10.1038/nphoton.2007.171Search in Google Scholar

[38] S. Hirano, N. Takeuchi, S. Shimada, K. Masuya, K. Ibe, H. Tsunakawa and M. Kuwabara, Room-temperature nanowire ultraviolet lasers: an aqueous pathway for zinc oxide nanowires with low defect density, J. Appl. Phys. 98, 094305 (2005). Search in Google Scholar

[39] C.E. Hofmann, F.J. Garcia de Abajo and H.A. Atwater, Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resontators, Nano Lett. 11, 372 (2011). Search in Google Scholar

[40] R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes and A. Beveratos, Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature, Opt. Lett. 35, 1154 (2010). Search in Google Scholar

[41] Y. Hou, P. Renwick, B. Liu, J. Bai and T.Wang, Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold, Sci. Rep. 4, 5014 (2014). Search in Google Scholar

[42] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Room-temperature ultraviolet nanowire lasers, Nature 292, 1897 (2001). 10.1126/science.1060367Search in Google Scholar PubMed

[43] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara and T. Kukui, Single GaAs/GaAsP coaxial core-shell nanowire lasers, Nano Lett. 9, 112 (2009). Search in Google Scholar

[44] J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally and P. Yang, Single nanowire lasers, J. Phys. Chem. B 105, 11387 (2001). 10.1021/jp012304tSearch in Google Scholar

[45] J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang and R.J. Saykally, Single gallium nitride nanowire lasers, Nat. Materials 1, 106 (2002). 10.1038/nmat728Search in Google Scholar PubMed

[46] J.C. Johnson, H. Yan, P. Yang and R.J. Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides, J. Phys. Chem. B 107, 8816 (2003). 10.1021/jp034482nSearch in Google Scholar

[47] J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang and R.J. Saykally, Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nanolett. 4, 197 (2004). Search in Google Scholar

[48] T.J. Kempa, R.W. Day, S.K. Kim, H.G. Park and C.M. Lieber, Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells, Energy Environ. Sci. 6, 719 (2013). Search in Google Scholar

[49] M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin and Y. Fainman, Thresholdless nanoscale coaxial lasers, Nature 482, 204 (2012). 10.1038/nature10840Search in Google Scholar PubMed

[50] C. F. Klingshirn, ZnO: materials, physics and applications, ChemPhysChem 8, 782 (2007). Search in Google Scholar

[51] C. F. Klingshirn, Semiconductor Optics, Springer 4th Edition (2012). 10.1007/978-3-642-28362-8Search in Google Scholar

[52] A. Larrue, C. Wilhelm, G. Vest, S. Combrié, A. de Rossi and C. Soci, Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission, Opt. Exp. 20, 7758 (2012). Search in Google Scholar

[53] K. Leosson, Optical amplification of surface plasmon polaritons: review, J. Nanophoton. 6, 61801 (2012). Search in Google Scholar

[54] Q. Li, J.B. Wright, W.W. Chow, T.S. Luk, I. Brener, L.F. Fester and G.T.Wang, Single-mode GaN nanowire lasers, Opt. Exp. 20, 17873 (2012). Search in Google Scholar

[55] J. Li, C. Meng, Y. Liu, X. Wu, Y. Lu, Y. Ye, L. Dai, L. Tong, X. Liu and Q. Yang, Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process, Adv. Mat. 25, 833 (2013). Search in Google Scholar

[56] K. Li, H. Sun, F. Ren, K.W. Ng, T.T.D. Tran, R. Chen and C.J. Chang- Hasnain, Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon, Nanolett. 14, 183 (2014). Search in Google Scholar

[57] X. Liu, Q. Zhang, Q. Xiong and T.C. Sum, Tailoring the lasing modes in semiconductor nanowire cavities using intrinsic selfabsorption, Nano Lett. 13, 1080 (2013). Search in Google Scholar

[58] Z. Liu, L. Yin, H. Ning, Z. Yang, L. Tong and C.Z. Ning, Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation, Nano Lett. 13, 4945 (2013). Search in Google Scholar

[59] C.Y. Luan, Y.K. Liu, Y. Jiang, J.S. Jie, I. Bello, S.T. Lee and J.A. Zapien, Composition tuning of room-temperature nanolasers, Vacuum 86, 737 (2012). 10.1016/j.vacuum.2011.07.004Search in Google Scholar

[60] R.M. Ma, X.L. Wei, L. Dai, S.F. Liu, T. Chen, S. Yue, Z. Li, Q. Chen and G.G. Qin, Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity, Nano Lett. 9, 2697 (2009). Search in Google Scholar

[61] Y.Ma, X. Guo, X.Wu, L. Dai and L. Tong, Semiconductor nanowire lasers, Adv. Opt. Phot. 5, 216 (2013). Search in Google Scholar

[62] R.M. Ma, R.F. Oulton, V.J. Sorger and X. Zhang, Surface plasmon–polaritonamplifiers and lasersPlasmon lasers: coherent light source at molecular scales, Laser Photonics Rev. 7, 1 (2013). Search in Google Scholar

[63] A.V. Maslov and C.Z. Ning, Composition tuning of roomtemperature nanolasers, Appl. Phys. Lett. 83, 1237 (2003). Search in Google Scholar

[64] A.V. Maslov and C.Z. Ning, Modal properties of semiconductor nanowires for laser applications, Proc. SPIE 5349, Physics and Simulation of electronic devices XII (2004). 10.1117/12.529364Search in Google Scholar

[65] A.V.Maslov and C.Z. Ning, Far-field emission of a semiconductor nanowire laser, Opt. Lett. 29, 572 (2004). Search in Google Scholar

[66] A.V. Maslov and C.Z. Ning, Modal gain in a semiconductor nanowire laser with anisotropic bandstructure, IEEE J. Quant. Elec. 40, 1389 (2004). Search in Google Scholar

[67] A.V. Maslov and C.Z. Ning, Size reduction of a semiconductor nanowire laser by using metal coating, Proc. SPIE 6468, Physics and Simulation of electronic devices XV (2007). 10.1117/12.723786Search in Google Scholar

[68] A.V. Maslov and C.Z. Ning, GaN nanowire lasers, Nitride Semiconductor Devices: Principles and Simulation, Wiley-VCH publisher, J. Piprek (Ed.) (2007). Search in Google Scholar

[69] B. Mayer, D. Rudolph, J. Schnell, S. Morkoetter, J. Winnerl, J. Treu, K. Mueller, G. Bracher, G. Abstreiter, G. Koblmueller and J.J. Finley, Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature, Nature Comm. 4, 2931 (2013). Search in Google Scholar

[70] C.Z. Ning, Semiconductor Lasers, Phys. Stat. Sol. b 247, 774 (2010). 10.1002/pssb.200945436Search in Google Scholar

[71] C.Z. Ning, Semiconductor Nanowire Lasers, Semiconductors and Semimetals, Academic Press 86, 455 (2012). 10.1016/B978-0-12-391066-0.00012-5Search in Google Scholar

[72] T. Nobis and M. Grundmann, Low order whispering gallery modes in hexagonal nanocavities, Phys. Rev. A 72, 063806 (2005). 10.1103/PhysRevA.72.063806Search in Google Scholar

[73] M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong and U.Wiesner, Demonstration of a spaser-based nanolaser, Nature 460, 1110 (2009). 10.1038/nature08318Search in Google Scholar PubMed

[74] D. O’Carroll, I. Leiberwirth and G. Redmond, Microcavity effect and optically pumped lasing in single conjugated polymer nanowires, Nat. Nanotechnology 2, 180 (2007). 10.1038/nnano.2007.35Search in Google Scholar PubMed

[75] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin and Y. Fainman, Room-temperature subwavelength metallo-dielectric lasers, Nat. Photonics 4, 395 (2010). 10.1038/nphoton.2010.88Search in Google Scholar

[76] A. Pan, S. Wang, R. Liu, C. Li and B. Zou, Thermal stability and lasing of CdS nanowires coated by amorphous silica, Small 11, 1058 (2005). 10.1002/smll.200500169Search in Google Scholar PubMed

[77] A. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin, B. Zou and C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip, Nano Lett. 9, 784 (2009). Search in Google Scholar

[78] C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu and Z.L.Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photonics 7, 752 (2013). 10.1038/nphoton.2013.191Search in Google Scholar

[79] H.G. Park, F. Qian, C.J. Barrelet and Y. Li, Microstadium singlenanowire laser, Appl. Phys. Lett. 91, 251115 (2007). Search in Google Scholar

[80] H. Park and K.B. Crozier, Multispectral imaging with vertical silicon nanowires, Sci. Rep. 3, 2460 (2013). Search in Google Scholar

[81] P.J. Pauzauskie, D.J. Sirbuly and P. Yang, Semiconductor Nanowire Ring Resonator Laser, Phys. Rev. Lett. 96, 143903 (2006). Search in Google Scholar

[82] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, Optical gain in silicon nanocrystals, Nature 408, 440 (2000). 10.1038/35044012Search in Google Scholar PubMed

[83] Qin et al., Tuning a terahertz wire laser, Nature Phot. 3, 732 (2009). Search in Google Scholar

[84] F. Qian, Y. Li, S. Gradec caronak, H.G. Park, Y. Dong, Y. Ding, Z.L. Wang and C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers, Nat. Materials 7, 701 (2008). 10.1038/nmat2253Search in Google Scholar PubMed

[85] R. Roeder, D. Ploss, A. Kriesch, R. Buschlinger, S. Geburt, U. Peschel and C. Ronning, Polarization features of optically pumped CdS nanowire lasers, J. Phys. D 47, 394012 (2014). 10.1088/0022-3727/47/39/394012Search in Google Scholar

[86] C. Wilhelm, A. Larrue, X. Dai, D. Migas, C. Soci, Anisotropic photonic properties of III-V nanowires in the zinc-blende and wurtzite phase, Nanoscale 4, 1446 (2012). 10.1039/c2nr00045hSearch in Google Scholar PubMed

[87] D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan and C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers, Nature Phot. 7, 963 (2013). Search in Google Scholar

[88] A.C. Scofield, J.N. Shapiro, A. Lin, A.D.Williams, P.S. Wong, B.L. Liang and D.L. Huffaker, Bottom-up photonic crystal cavities formed by patterned III-V nanopillars, Nano Lett. 11, 2242 (2011). Search in Google Scholar

[89] A.C. Scofield, S.H. Kim, J.N. Shapiro, A. Lin, B.L. Liang, A. Scherer and D.L. Huffaker, All PhC bottom-up laser bottomup photonic crystal lasers, Nano Lett. 11, 5387 (2011). Search in Google Scholar

[90] M.K. Seo, J.K. Yang, K.Y. Jeong, H.G. Park, F. Qian, H.S. Ee, Y.S. No and Y.H. Lee, Modal characteristics in a single-nanowire cavity with a triangular cross section, Nano Lett. 8, 4534 (2008). Search in Google Scholar

[91] B.S. Song, S. Noda, T. Asano and Y. Akahane, Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Materials 4, 207 (2005). 10.1038/nmat1320Search in Google Scholar

[92] M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future, Opt. Exp. 19, 22029 (2009). Search in Google Scholar

[93] G.K. Svendsen, H. Weman and J. Skaar, Model for reflection and transmission matrices of nanowire end facets, J. Appl. Phys. 109, 103101 (2011). Search in Google Scholar

[94] D. Vanmaekelbergh and L.K. van Vugt, ZnO nanowire lasers, Nanoscale 3, 2783 (2011). 10.1039/c1nr00013fSearch in Google Scholar PubMed

[95] L.K. van Vugt, S. Rühle and D. Vanmaekelbergh, Phase correlated nondirectional laser emission from the end facets of a ZnO nanowire, Nano Lett. 6, 2707 (2006). Search in Google Scholar

[96] M.A.M. Versteegh, D. Vanmaekelberg and J.I. Dijkhuis, Roomtemperature laser emission of ZnO nanowires explained by many-body theory, Phys. Rev. Lett. 108, 157402 (2012). Search in Google Scholar

[97] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser and T.J. Kippenberg, Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature 482, 63 (2012). 10.1038/nature10787Search in Google Scholar PubMed

[98] M.Q. Wang, Y.Z. Huang, Q. Chen and Z.P. Cai, Design of a novel micro-laser formed by monolithic integration of a III-V pillarwith a silicon photonic crystal cavity, IEEE J. Quant. Elec. 42, 146 (2006). Search in Google Scholar

[99] G. Wang, M. Leys, R. Loo, O Richard, H. Bender, G. Brammertz, N.Waldron,W.E.Wang, J. Dekoster, M. Caymax, M. Seefeldt and M. Heyns, Selective area growth of InP and defect elimination on Si (001) Substrates, J. Electrochem. Soc. 158, H645-H65 (2011). Search in Google Scholar

[100] Z.Wang, B. Tian and D. Van Thourhout, Design of a novel microlaser formed by monolithic integration of a III-V pillar with a silicon photonic crystal cavity, J. Light. Tech. 31, 1475 (2013). Search in Google Scholar

[101] Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. Le Thomas, C. Merckling, W. Guo, J. Dekoster, J. Van Campenhout, P. Absil and D. Van Thourhout, Polytypic InP nanolaser monolithically integrated on (001) silicon, Nanolett. 13, 5063 (2013). Search in Google Scholar

[102] W. Wei, Y. Liu, X. Zhang, Z. Wang and X. Ren, Evanescentwave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers, Appl. Phys. Lett. 104, 223103 (2014). Search in Google Scholar

[103] D.Wiesmann, I. Brener, L. Pfeiffer, M.A. Khan and C.J. Sun, Gain spectra and stimulated emission in epitaxial (In,Al) GaN thin films, Appl. Phys. Lett. 69, 3384 (1996). Search in Google Scholar

[104] J.B. Wright, S. Campione, S. Liu, J.A. Martinez, H. Xu, T.S. Luk, Q. Li, G.T. Wang, B.S. Swartzentruber, L.F. Lester and I. Brener, Distributed feedback gallium nitride nanowire lasers, Appl. Phys. Lett. 104, 041107 (2014). Search in Google Scholar

[105] Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song and P. Yang, Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties, Chem. Eur. J. 8, 1261 (2002). Search in Google Scholar

[106] Y.Wu, H. Yan, M. Huang, B. Messer, J.H. Song and P. Yang, Plasmonic green nanolaser based on a metal-oxide-semiconductor structure, Chem. Eur. J. 8, 1261 (2002). Search in Google Scholar

[107] X. Wu, Y. Xiao, C. Meng, X. Zhang, S. Yu, Y. Wang, C. Yang, X. Guo, C.Z. Ning and L. Tong, Hybrid photon-plasmon nanowire lasers, Nanolett. 13, 5654 (2013). Search in Google Scholar

[108] Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai and L. Tong, Single-Nanowire Single-Mode Laser, Nano Lett. 11, 1122 (2011). Search in Google Scholar

[109] T. Xu, S. Yang, S.V. Nair and H.E. Ruda, Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations, Phys. Rev. B 75, 125104 (2007). 10.1103/PhysRevB.75.125104Search in Google Scholar

[110] H. Xu, J.B. Wright, T.S. Luk, J.J. Figiel, K. Cross, L.F. Lester, G. Balakrishnan, G.T.Wang, I. Brener and Q. Li, Single-mode lasing of GaN nanowire-pairs, Appl. Phys. Lett. 101, 113106 (2012). Search in Google Scholar

[111] H. Xu, J.B.Wright, A. Hurtado, Q. Li, T.S. Luk, J.J. Figiel, K. Cross, G. Balakrishnan, L.F. Lester, I. Brener and G.T. Wang, Gold substrate-induced single-mode lasing of GaN nanowires, Appl. Phys. Lett. 101, 221114 (2012). Search in Google Scholar

[112] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.J. Choi, Controlled frowth of ZnO nanowires and their optical properties, Adv. Funct.Mat. 12, 323 (2002). Search in Google Scholar

[113] H. Yan, R. He, J. Johnson, M. Law, R. Saykally and P. Yang, Dendritic Nanowire Ultraviolet Laser Array, J. Am. Chem. Soc. 125, 4728 (2003). Search in Google Scholar

[114] H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J.R. McKinney, J. Pham, R. Saykally and P. Yang, ZnO nanoribbon microcavity lasers, Adv. Mat. 15, 1907 (2003). Search in Google Scholar

[115] Q. Yang, X. Jiang, X. Guo, Y. Chen and L. Tong, Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity, Appl. Phys. Lett. 94, 101108 (2009). Search in Google Scholar

[116] W. Yang, Y. Ma, Y. Wang, C. Meng, X. Wu, Y. Ye, L. Dai, L. Tong, X. Liu and Q. Yang, Bending effects on lasing action of semiconductor nanowires, Opt. Exp. 21, 2024 (2013). Search in Google Scholar

[117] Z. Yang, D.Wang, C. Meng, Z.Wu, Y.Wang, Y.Ma, L. Dai, X. Liu, T. Hasan, X. Liu and Q. Yang, Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires, Nanolett. 14, 3153 (2014). Search in Google Scholar

[118] Y. Ye, Y.Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. Tong and G. Qin, Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method, Nanoscale 3, 3072 (2011). 10.1039/c1nr10392jSearch in Google Scholar PubMed

[119] V.V. Zalamai, V.V. Ursaki, C. Klingshirn, H. Kalt, G.A. Emelchenko and A.N. Redkin, Lasing with guided modes in ZnO nanorods and naowires, Appl. Phys. B 97, 817 (2009). 10.1007/s00340-009-3607-8Search in Google Scholar

[120] J.A. Zapien, Y. Jiang, X.M. Meng, W. Chen, F.C.K. Au, Y. Lifshitz and S.T. Lee, Room-temperature single nanoribbon lasers, Appl. Phys. Lett. 84, 1189 (2004). Search in Google Scholar

[121] M.I. Stockman, Spaser, Plasmonic Amplification, and Loss Compensation. Chapter 1 in "Active Plasmonics and Tuneable Plasmonic Metamaterials", 1st Ed. by A.V. Zayats and S.A.Maier, John Wiley & Sons (2013). 10.1002/9781118634394.ch1Search in Google Scholar

[122] Y. Zhang, R.E. Russo and S.S. Mao, Quantum eflciency of ZnO nanowire lasers, Appl. Phys. Lett. 87, 043106 (2005). Search in Google Scholar

[123] C.F. Zhang, Z.W. Dong, G.J. You, S.X. Qian and H. Deng, Multiphoton route to ZnO nanowire lasers, Opt. Lett.31, 3345 (2006). Search in Google Scholar

[124] Y. Zhang and M. Loncar, Ultra-high quality factor optical resonators based on semiconductor nanowires, Opt. Exp. 16, 17400 (2008). Search in Google Scholar

[125] C. Zhang, F. Zhang, T. Xia, N. Kumar, J. Hahm, J. Liu, Z.L. Wang and J. Xu, Low-threshold two-photon pumped ZnO nanowire lasers, Opt. Exp. 17, 7893 (2009). Search in Google Scholar

[126] J.Y. Zhang, Q.F. Zhang, T.S. Deng and J.L. Wu, Electrically driven ultraviolet lasing behavior from phosphorus-doped p- ZnO nanonail array/n-Si heterojunction, Appl. Phys. Lett. 95, 211107 (2009). Search in Google Scholar

[127] Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber and Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser, Nat. Comm. 5, 4953 (2014). Search in Google Scholar

[128] Zhou et al., Lasing Mechanism of ZnO Nanowires/Nanobelts at Room Temperature, J. Phys. Chem. B 110, 12865 (2006). 10.1021/jp061357dSearch in Google Scholar PubMed

[129] H. Zhou, M.Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn and H. Kalt, Ordered uniform-sized ZnOnanolasers arrays, Appl. Phys. Lett. 91, 181112 (2007). Search in Google Scholar

[130] L. Zhu, Modal properties of hybrid plasmonic waveguides for nanolaser applications, IEEE Phot. Tech. Lett. 22, 535 (2010). Search in Google Scholar

[131] M.A. Zimmler, J. Bao, F. Capasso, S. Müller and C. Ronning, Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation, Appl. Phys. Lett. 93, 051101 (2008). Search in Google Scholar

[132] M.A. Zimmler, F. Capasso, S. Müller and C. Ronning, Optically pumped nanowire lasers: invited review, Semicond. Sci. Technol. 25, 024001 (2010). Search in Google Scholar

Published Online: 2015-5-20

© 2015 C. Couteau et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.2.2024 from
Scroll to top button