Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter November 6, 2015

Optical separation and controllable delivery of cells from particle and cell mixture

  • Yuchao Li , Hongbao Xin , Chang Cheng , Yao Zhang EMAIL logo and Baojun Li
From the journal Nanophotonics


Cell separation and delivery have recently gained significant attention in biological and biochemical studies. In thiswork, an optical method for separation and controllable delivery of cells by using an abruptly tapered fiber probe is reported. By launching a laser beam at the wavelength of 980 nm into the fiber, a mixture of cells with sizes of ~5 and ~3 μm and poly(methyl methacrylate) particles with size of 5 μm are separated into three chains along the direction of propagation of light. The cell and particle chains are delivered in three dimensions over 600 μm distance. Experimental results are interpreted by numerical simulations. Optical forces and forward migration velocities of different particles and cells are calculated and discussed.


[1] Dittrich P.S., Manz A., Lab-on-a-chip: Microfluidics in drug discovery, Nat Rev Drug Discov 2006, 5, 210-8.10.1038/nrd1985Search in Google Scholar PubMed

[2] El-Ali J., Sorger P.K., Jensen K.F., Cells on chips, Nature 2006, 442, 403-11.10.1038/nature05063Search in Google Scholar PubMed

[3] Nagrath S., et al, Isolation of rare circulating tumour cells in cancer patients by microchip technology, Nature 2007, 450, 1235-9.10.1038/nature06385Search in Google Scholar PubMed PubMed Central

[4] Dittrich P.S., Tachikawa K., Manz A., Micro total analysis systems, Latest advancements and trends, Anal Chem 2006, 78, 3887-908.10.1021/ac0605602Search in Google Scholar PubMed

[5] Kose A.R., Fischer B., Mao L., Koser H., Label-free cellular manipulation and sorting via biocompatible ferrofluids, Proc Nat Acad Sci USA 2009, 106, 21478-83.10.1073/pnas.0912138106Search in Google Scholar PubMed PubMed Central

[6] Mayer G., Ahmed M.L., Dolf A., Endl E., Knolle P.A., Famulok M., Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures, Nat Protoc 2010, 5, 1993-2004.10.1038/nprot.2010.163Search in Google Scholar PubMed

[7] Miltenyi S., Müller W., Weichel W., Radbruch A., High gradient magnetic cell separation with MACS, Cytometry 1990, 11, 231-8.10.1002/cyto.990110203Search in Google Scholar PubMed

[8] Cui H.H., Voldman J., He X.F., Lim K.M., Separation of particles by pulsed dielectrophoresis, Lab Chip 2009, 9, 2306-12.10.1039/b906202eSearch in Google Scholar PubMed

[9] Petersson F., Nilsson A., Jönsson H., Laurell T., Acoustic control of suspended particles in micro fluidic chips, Anal Chem 2005, 77, 1216-21.10.1021/ac048394qSearch in Google Scholar PubMed

[10] Pamme N.,Wilhelm C., Continuous sorting ofmagnetic cells via on-chip free-flow magnetophoresis, Lab Chip 2006, 6, 974-80.10.1039/b604542aSearch in Google Scholar PubMed

[11] Shen F., Hwang H., Hahn Y.K., Park J.K., Label-free cell separation using a tunable magnetophoretic repulsion force, Anal Chem 2012, 84, 3075-81.10.1021/ac201505jSearch in Google Scholar PubMed

[12] Gossett D.R., et al. Label-free cell separation and sorting in microfluidic systems, Anal Bioanal Chem 2010, 397, 3249-67.10.1007/s00216-010-3721-9Search in Google Scholar PubMed PubMed Central

[13] Gao Y., Li W., Pappas D., Recent advances in microfluidic cell separations, Analyst 2013, 138, 4714-21.10.1039/c3an00315aSearch in Google Scholar PubMed PubMed Central

[14] Landenberger B., Höfemann H., Wadle S., Rohrbach A., Microfluidic sorting of arbitrary cells with dynamic optical tweezers, Lab Chip 2012, 12, 3177-83.10.1039/c2lc21099aSearch in Google Scholar PubMed

[15] Wang X., et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies, Lab Chip 2011, 11, 3656-62.10.1039/c1lc20653bSearch in Google Scholar PubMed

[16] MacDonald M.P., Spalding G.C., Dholakia K., Microfluidic sorting in an optical lattice, Nature 2003, 426, 421-4.10.1038/nature02144Search in Google Scholar PubMed

[17] Hart S.J., Terray A.V., Refractive-index-driven separation of colloidal polymer particles using optical chromatography, Appl Phys Lett 2003, 83, 5316-8.10.1063/1.1635984Search in Google Scholar

[18] Yang A.J., Moore S.D., Schmidt B.S., Klug M., Lipson M., Erickson D., Opticalmanipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides, Nature 2009, 457, 71-5.10.1038/nature07593Search in Google Scholar PubMed

[19] Gaugiran S., et al., Optical manipulation of microparticles and cells on silicon nitride waveguides, Opt. Express 2005, 13, 6956-63.10.1364/OPEX.13.006956Search in Google Scholar

[20] Zhang Y., Li B., Particle sorting using a subwavelength optical fiber, Laser Photon Rev 2013, 7, 289-96.10.1002/lpor.201200087Search in Google Scholar

[21] Li L., Xin H., Lei H., Li B., Optofluidic extraction of particles using a sub-microfiber, Appl Phys Lett 2012, 101, 074103.10.1063/1.4747153Search in Google Scholar

[22] Liu Z., Guo C., Yang J., Yuan L., Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application, Opt Express 2006, 14, 12510-6.10.1364/OE.14.012510Search in Google Scholar

[23] Xin H., Xu R., Li B., Optical trapping, driving, and arrangement of particles using a tapered fibre probe, Sci Rep 2012, 2, 818.10.1038/srep00818Search in Google Scholar PubMed PubMed Central

[24] Fazal F.M., Block S.M., Optical tweezers study life under tension, Nature Photon 2011, 5, 318-21.10.1038/nphoton.2011.100Search in Google Scholar PubMed PubMed Central

[25] Burns M.M., Fournier J.M., Golovchenko J.A., Optical binding, Phys Rev Lett 1989, 63, 1233.10.1103/PhysRevLett.63.1233Search in Google Scholar PubMed

[26] Dholakia K., Zemánek P., Colloquium: Gripped by light: Optical binding, Rev Mod Phys 2010, 82, 1767.10.1103/RevModPhys.82.1767Search in Google Scholar

[27] Xin H., Xu R., Li B., Optical formation and manipulation of particle and cell patterns using a tapered optical fiber, Laser Photon Rev. 2013, 7, 801-9.Search in Google Scholar

[28] Aas E.J., Refractive index of phytoplankton derived from its metabolite composition, Plankton Res 1996, 18, 2223-49.10.1093/plankt/18.12.2223Search in Google Scholar

[29] Fan X., Zheng W., Singh D.J., Light scattering and surface plasmons on small spherical particles, Light Sci Appl 2014, 3, e179.10.1038/lsa.2014.60Search in Google Scholar

[30] Zhang D., Yuan X.C., Tjin S.C., Krishnan S., Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping, Opt Express 2004, 12, 2220-30. 10.1364/OPEX.12.002220Search in Google Scholar PubMed

Received: 2015-6-23
Accepted: 2015-7-13
Published Online: 2015-11-6

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 1.4.2023 from
Scroll to top button