Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

A compact plasmonic MOS-based 2×2 electro-optic switch

  • Chenran Ye , Ke Liu , Richard A. Soref and Volker J. Sorger EMAIL logo
From the journal Nanophotonics


We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, indium-tin-oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with silicon-on-insulator platforms for low-cost manufacturing.


[1] S.J. Volker, Nano-optics gets practical: Plasmon Modulators, Nat. Nanotechonol. 10, 11-15 (2015).Search in Google Scholar

[2] M. Papuchon, Y. Combemale, X. Mathieu, D.B. Ostrowsky, L. Reiber, A.M. Roy, B. Sejourne, and M. Werner, Electrically switched optical directional coupler: Cobra, Appl. Phys. Lett. 27, 289 (1975).Search in Google Scholar

[3] Y. Enami, D. Mathine, C.T. DeRose, R.A. Norwood, J. Luo, A.K-Y. Jen, and N. Peyghambarian, Hybrid electro-optic polymer/solgel waveguide directional coupler switches, Appl. Phys. Lett. 94(21), 213513 (2009).10.1063/1.3141452Search in Google Scholar

[4] X.G. Tu, S.S.N. Ang, A.B. Chew, J.H. Teng, and T. Mei, An ultracompact directional coupler based on GaAs cross-slot waveguide, IEEE Photon. Technol. Lett. 22(17), 1324-1326 (2010).10.1109/LPT.2010.2055234Search in Google Scholar

[5] A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R.T. Chen, Ultracompact and fabrication-tolerant integrated polarization splitter, Opt. Lett. 36(20), 4047-4049 (2011).10.1364/OL.36.004047Search in Google Scholar PubMed

[6] B.K. Yang, S.Y. Shin, and D. Zhang, Ultrashort polarization splitter using two-mode interference in silicon photonic wires, IEEE Photon. Technol. Lett. 21(7), 432-434 (2009).10.1109/LPT.2009.2013638Search in Google Scholar

[7] L.B. Soldano, A.H. de Vreede, M.K. Smit, B.H. Verbeek, E.G. Metaal, and F.H. Groen, Sub-μs Switching Time in Siliconon- Insulator Mach-Zehnder Thermooptic Switch, IEEE Photon. Technol. Lett. 16(9), 2039-2041 (1994).10.1109/LPT.2004.833896Search in Google Scholar

[8] D. Dai, Z. Wang, J. Peters, and J.E. Bowers, Very Low-Power, Polarization-independent, and High-Speed Polymer Thermooptic Switch, IEEE Photon. Technol. Lett., 21(24), 1861-1863 (2009).10.1109/LPT.2009.2034131Search in Google Scholar

[9] N. Yamamoto, T. Ogawa, and K. Komori, Photonic crystal directional coupler switch with small switching length and wide bandwidth, Opt. Express 14(3), 1223-229 (2006).10.1364/OE.14.001223Search in Google Scholar

[10] D.M. Beggs, T.P. White, L. Cairns, L. O’Faolain, and T.F. Krauss, Ultrashort Photonic Crystal Optical Switch Actuated by a Microheater, IEEE Photon. Technol. Lett. 21(1), 24-26 (2009).10.1109/LPT.2008.2008104Search in Google Scholar

[11] H. Subbaraman, X.C. Xu, A. Hosseini, X.Y. Zhang, Y. Zhang, D. Kwong, and R.T. Chen, Recent advances in silicon-based passive and active optical interconnects, Opt. Express, 23(3), 2487-2511 (2015).10.1364/OE.23.002487Search in Google Scholar PubMed

[12] M.R. Watts, H.A. Haus, and E.P. Ippen, Integrated modeevolution- based polarization splitter, Opt. Lett. 30(9), 967-969 (2005).10.1364/OL.30.000967Search in Google Scholar

[13] D. Dai, J. Bauters, and J.E. Bowers, Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction, Light: Sci. Appl. 1(3), 1-14 (2012).Search in Google Scholar

[14] E. Verhagen, M. Spasenovic, A. Polman, and L. (Kobus) Kuipers, Nanowire plasmon excitation by adiabatic mode transformation, Phys. Rev. Lett. 102, 203904 (2009).Search in Google Scholar

[15] J.A. Dionne, H.J. Lezec, and H.A. Atwater, Highly confined photon transport in subwavelength metallic slot waveguides, Nano Lett. 6(9), 1928-1932 (2006).10.1021/nl0610477Search in Google Scholar PubMed

[16] V.J. Sorger, Z. Ye, R.F. Oulton, G. Bartal, Y. Wang, and X. Zhang, Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales, Nat. Commun. 2, 331 (2011).Search in Google Scholar

[17] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, and T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonantors, Nature 440(7083), 508-511 (2006).10.1038/nature04594Search in Google Scholar PubMed

[18] K.-Y. Jung, F.L. Teixeira, and R.M. Reano, Surface plasmon coplanar waveguides: Mode characteristics and mode conversion losses, IEEE Photon. Technol. Lett. 21(10), 630-632 (2009).Search in Google Scholar

[19] D.F.P. Pile, T. Ogawa, D.K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, Theoretical and ex perimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding, Appl. Phys. Lett. 87, 061106 (2005).Search in Google Scholar

[20] R.F. Oulton, G. Bartal, D.F.P. Pile, X. Zhang, Confinement and propagation characteristics of subwavelength plasmonic modes, New J. Phys. 10(10), 105018 (2008).10.1088/1367-2630/10/10/105018Search in Google Scholar

[21] B. Steinberger, A. Hohenau, H. Ditlbacher, A.L. Stepanov, A. Drezet, F.R. Aussenegg, A. Leitner, and J.R. Krenn, Dielectric stripes on gold as surface plasmon waveguides, App. Phys Lett. 88, 094104 (2006).Search in Google Scholar

[22] A.V. Krasavin and A.V. Zayats, Silicon-based plasmonic waveguides, Opt. Express 18(11), 11791-11799 (2010).10.1364/OE.18.011791Search in Google Scholar PubMed

[23] R.M. Briggs, J. Grandidier, S.P. Burgos, E. Feigenbaum, and H.A. Atwater, Eflcient coupling between dielectric-loaded plasmonic and silicon photonic waveguides, Nano Lett. 10(12), 4851-4857 (2010).10.1021/nl1024529Search in Google Scholar PubMed

[24] R.F. Oulton, V.J. Sorger, D.F.B. Pile, D. Genov, and X. Zhang, Nano-photonic confinement and transport in a hybrid semiconductor-surface plasmon waveguide, Nat. Photonics 2, 496-500 (2008).10.1038/nphoton.2008.131Search in Google Scholar

[25] V.J. Sorger, Z. Ye, R.F. Oulton, G. Bartal, Y. Wang, and X. Zhang, Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales, Nat. Commun. 2, 331 (2011).Search in Google Scholar

[26] C. Huang, R.J. Lamond, S.K. Pickus, Z.R. Li, and V.J. Sorger, A sub-size modulator beyond the eflciency-loss limit, IEEE Photon. J., 5(4), 202411(2013).10.1109/JPHOT.2013.2274772Search in Google Scholar

[27] C. Ye, S. Khan, Z.R. Li, E. Simsek, and V.J. Sorger, _-Size ITO and Graphene-Based Electro-Optic Modulators on SOI, IEEE J. Sel. Topics Quantum Electron. 20(4), 3400310(2014).10.1109/JSTQE.2014.2298451Search in Google Scholar

[28] V.J. Sorger, N.D. Lanzillotti-Kimura, and X. Zhang, Ultra-compact Silicon Nanophotonic Modulator with broadband Response, Nanophotonics 1(1), 17-22 (2012).10.1515/nanoph-2012-0009Search in Google Scholar

[29] J.P. Donnelly, H.A. Haus, and N. Whitaker, Symmetric threeguide optical coupler with nonidentical center and outside guides, IEEE J. Quantum Electron. 23(4), 401-406 (1987).10.1109/JQE.1987.1073370Search in Google Scholar

[30] F. Lou, D. Dai, and L. Wosinski, Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler, Opt. Lett. 37(16), 3372-3374 (2012).10.1364/OL.37.003372Search in Google Scholar PubMed

[31] J. Chee, S. Zhu, and G. Q. Lo, CMOS compatible polarization splitter using hybrid plasmonic waveguide, Opt. Express 20(23), 25345-25355 (2012).10.1364/OE.20.025345Search in Google Scholar PubMed

[32] E. Feigenbaum, K. Diest and H.A. Atwater, Unity-order index change in transparent conducting oxides at visible frequencies, Nano Lett. 10(6), 2111-2116 (2010).10.1021/nl1006307Search in Google Scholar PubMed

[33] E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).Search in Google Scholar

[34] D. Dai, Z. Wang, J. Peters, and J.E. Bowers, Compact Polarization Beam Splitter Using an Asymmetrical Mach-Zehnder Interferometer Based on Silicon-on-InsulatorWaveguides, IEEE Photon. Technol. Lett., 24(8), 673-675 (2012).10.1109/LPT.2012.2184530Search in Google Scholar

[35] D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L.Markey, J.-C. Weeber, A. Dereux, A. Kumar, S.I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E.E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, 0.48Tb/s (12×40 Gb/s) WDM transmission and highquality thermo-optic switching in dielectric loaded plasmonics, Opt. Express 20(7), 7655-7662 (2012).10.1364/OE.20.007655Search in Google Scholar PubMed

[36] D.J. Thomson, F.Y. Gardes, J.-M. Fedeli, S. Zlatanovic, You. Hu, B.P.P. Kuo, E. Myslivets, N. Alic, S. Radic, G.Z. Mashanovich, and G.T. Reed, 50-Gb/s Silicon optical modulator, IEEE Photon. Technol. Lett. 24(4), 234-236 (2012)10.1109/LPT.2011.2177081Search in Google Scholar

[37] D.A.B. Miller, Device requirements for optical interconnects to Silicon chips, Proceeding of the IEEE 97, 1166-1185 (2009). 10.1109/JPROC.2009.2014298Search in Google Scholar

Received: 2015-6-27
Accepted: 2015-6-28
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.3.2023 from
Scroll Up Arrow