Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

Limitations of Extreme Nonlinear Ultrafast Nanophotonics

  • Christian Kern , Michael Zürch EMAIL logo and Christian Spielmann
From the journal Nanophotonics

Abstract

High-harmonic generation (HHG) has been established as an indispensable tool in optical spectroscopy. This effect arises for instance upon illumination of a noble gas with sub-picosecond laser pulses at focussed intensities significantly greater than 1012W/cm2. HHG provides a coherent light source in the extreme ultraviolet (XUV) spectral region, which is of importance in inner shell photo ionization of many atoms and molecules. Additionally, it intrinsically features light fields with unique temporal properties. Even in its simplest realization, XUV bursts of sub-femtosecond pulse lengths are released. More sophisticated schemes open the path to attosecond physics by offering single pulses of less than 100 attoseconds duration.

Resonant optical antennas are important tools for coupling and enhancing electromagnetic fields on scales below their free-space wavelength. In a special application, placing field-enhancing plasmonic nano antennas at the interaction site of an HHG experiment has been claimed to boost local laser field strengths, from insufficient initial intensities to sufficient values. This was achieved with the use of arrays of bow-tie-shaped antennas of ∼ 100nm in length. However, the feasibility of this concept depends on the vulnerability of these nano-antennas to the still intense driving laser light.We show, by looking at a set of exemplary metallic structures, that the threshold fluence Fth of laser-induced damage (LID) is a greatly limiting factor for the proposed and tested schemes along these lines.We present our findings in the context of work done by other groups, giving an assessment of the feasibility and effectiveness of the proposed scheme.

References

[1] T. Pfeifer, C. Spielmann, and G. Gerber. Femtosecond x-ray science. Rep. Prog. Phys., 69(2):443-505, 2006.10.1088/0034-4885/69/2/R04Search in Google Scholar

[2] T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. G. Tisch, D. D. Meyerhofer, and M. H. R. Hutchinson. Spatial Coherence Measurement of Soft X-Ray Radiation Produced by High Order Harmonic Generation. Phys. Rev. Lett., 77(23):4756-4759, 1996.10.1103/PhysRevLett.77.4756Search in Google Scholar PubMed

[3] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.Attwood, R. Kienberger, F. Krausz, and U. Kleineberg. Single- Cycle Nonlinear Optics. Science, 320(5883):1614-1617, 2008.10.1126/science.1157846Search in Google Scholar PubMed

[4] T. Popmintchev, M. C Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn. The attosecond nonlinear optics of bright coherent Xray generation. Nat Photon, 4(12):822-832, 2010.10.1038/nphoton.2010.256Search in Google Scholar

[5] H. J. Wörner, J. B. Bertrand, B. Fabre, J. Higuet, H. Ruf, A. Dubrouil, S. Patchkovskii, M. Spanner, Y. Mairesse, V. Blanchet, E. Mével, E. Constant, P. B. Corkum, and D. M. Villeneuve. Conical Intersection Dynamics in NO2 Probed by Homodyne High-Harmonic Spectroscopy. Science, 334(6053):208-212, 2011.10.1126/science.1208664Search in Google Scholar PubMed

[6] A. N. Pfeiffer, C. Cirelli, M. Smolarski, and U. Keller. Recent attoclock measurements of strong field ionization. Attosecond spectroscopy, 414(0):84-91, 2013.10.1016/j.chemphys.2012.02.005Search in Google Scholar

[7] P. B. Corkum and F. Krausz. Attosecond science. Nat Phys, 3(6):381-387, 2007.10.1038/nphys620Search in Google Scholar

[8] F. Krausz and M. Y. Ivanov. Attosecond physics. Rev.Mod. Phys., 81(1):163-234, 2009.10.1103/RevModPhys.81.163Search in Google Scholar

[9] G. Sansone, L. Poletto, and M. Nisoli. High-energy attosecond light sources. Nat Photon, 5(11):655-663, 2011.10.1038/nphoton.2011.167Search in Google Scholar

[10] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompré, G. Mainfray, and C.Manus. Multiple-harmonic conversion of 1064nmradiation in rare gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 21(3):L31, 1988.10.1088/0953-4075/21/3/001Search in Google Scholar

[11] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71(13):1994, 1993.10.1103/PhysRevLett.71.1994Search in Google Scholar PubMed

[12] J. L. Krause, K. J. Schafer, and K. C. Kulander. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett., 68(24):3535-3538, 1992.10.1103/PhysRevLett.68.3535Search in Google Scholar PubMed

[13] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys., 72(2):545, 2000.Search in Google Scholar

[14] E. Takahashi, Y. Nabekawa, T. Otsuka, M. Obara, and K. Midorikawa. Generation of highly coherent submicrojoule soft x rays by high-order harmonics. Phys. Rev. A, 66(2):021802, 2002.10.1103/PhysRevA.66.021802Search in Google Scholar

[15] A. D. Shiner, C. A. Trallero-Herrero, N. Kajumba, H. C Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve. Wavelength Scaling of High Harmonic Generation Eflciency. Phys. Rev. Lett., 103(7):073902, 2009.10.1103/PhysRevLett.103.073902Search in Google Scholar PubMed

[16] P. Zeitoun, P. Balcou, S. Bucourt, F. Delmotte, G. Dovillaire, D. Douillet, J. Dunn, G. Faivre, M. Fajardo, K. A. Goldberg, S. Hubert, J. R. Hunter, M. Idir, S. Jacquemot, S. Kazamias, S. Le Pape, X. Levecq, C. L. S. Lewis, R. Marmoret, P. Mercère, A.-S Morlens, P. P. Naulleau, M. F. Ravet, C. Rémond, J. J. Rocca, R. F. Smith, P. Troussel, C. Valentin, and L. Vanbostal. Recent developments in X-UV optics and X-UV diagnostics. Appl. Phys. B, 78(7-8):983-988, 2004.10.1007/s00340-004-1430-9Search in Google Scholar

[17] J. Gautier, P. Zeitoun, C. Hauri, A.-S Morlens, G. Rey, C. Valentin, E. Papalarazou, J.-P Goddet, S. Sebban, F. Burgy, P. Mercère, M. Idir, G. Dovillaire, X. Levecq, S. Bucourt, M. Fajardo, H. Merdji, and J.-P Caumes. Optimization of the wave front of high order harmonics. The European Physical Journal D, 48(3):459-463, 2008.10.1140/epjd/e2008-00123-2Search in Google Scholar

[18] J. Lohbreier, S. Eyring, R. Spitzenpfeil, C. Kern, M. Weger, and C. Spielmann. Maximizing the brilliance of high-order harmonics in a gas jet. New J. Phys., 11(2):023016, 2009.10.1088/1367-2630/11/2/023016Search in Google Scholar

[19] S. Eyring, C. Kern, M. Zürch, and C. Spielmann. Improving high-order harmonic yield usingwavefront-controlled ultrashort laser pulses. Opt. Express, 20(5):5601-5606, 2012.10.1364/OE.20.005601Search in Google Scholar PubMed

[20] K. Nakajima. Compact X-ray sources: Towards a table-top freeelectron laser. Nat Phys, 4(2):92-93, 2008.Search in Google Scholar

[21] M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dobson, S. Düsterer, G. Grübel,W. Graeff, H. Graafsma, J. Hajdu, J.Marangos, J. Pflüger, H. Redlin, D. Riley, I. Robinson, J. Rossbach, A. Schwarz, K. Tiedtke, T. Tschentscher, I. Vartaniants, H. Wabnitz, H. Weise, R. Wichmann, K. Witte, Wolf A., M. Wulff, and M. Yurkov. The European X-Ray Free-Electron Laser Technical design report. DESY XFEL Project Group, 2007.Search in Google Scholar

[22] R. Spitzenpfeil, S. Eyring, C. Kern, C. Ott, J. Lohbreier, J. Henneberger, N. Franke, S. Jung, D.Walter, M. Weger, C.Winterfeldt, T. Pfeifer, and C. Spielmann. Enhancing the brilliance of highharmonic generation. Appl. Phys. A, 96(1):69-81, 2009.10.1007/s00339-009-5173-7Search in Google Scholar

[23] M. C Chen, M. R. Gerrity, S. Backus, T. Popmintchev, X. Zhou, P. Arpin, X. Zhang, H. C. Kapteyn, and M. M. Murnane. Spatially coherent, phase matched, high-order harmonic EUV beams at 50 kHz. Opt. Express, 17(20):17376-17383, 2009.10.1364/OE.17.017376Search in Google Scholar PubMed

[24] S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann. High harmonic generation by novel fiber amplifier based sources. Opt. Express, 18(19):20242-20250, 2010.10.1364/OE.18.020242Search in Google Scholar PubMed

[25] M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann. Towards isolated attosecond pulses at megahertz repetition rates. Nat Photon, 7(7):555-559, 2013.10.1038/nphoton.2013.131Search in Google Scholar

[26] A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H.- D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett., 36(17):3428-3430, 2011.10.1364/OL.36.003428Search in Google Scholar PubMed

[27] R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye. Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity. Phys. Rev. Lett., 94(19):193201, 2005.10.1103/PhysRevLett.94.193201Search in Google Scholar PubMed

[28] E. Seres, J. Seres, and C. Spielmann. Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate. Opt. Express, 20(6):6185-6190, 2012.Search in Google Scholar

[29] S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim. Highharmonic generation by resonant plasmon field enhancement. Nature, 453(7196):757-760, 2008.10.1038/nature07012Search in Google Scholar PubMed

[30] W. L. Barnes, A. Dereux, and T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824-830, 2003.10.1038/nature01937Search in Google Scholar PubMed

[31] M. Kauranen and A. V. Zayats. Nonlinear plasmonics. Nat Photon, 6(11):737-748, 2012.10.1038/nphoton.2012.244Search in Google Scholar

[32] R. Petry, M. Schmitt, and J. Popp. Raman Spectroscopy-A Prospective Tool in the Life Sciences. Chem. Phys. Chem., 4(1):14-30, 2003.10.1002/cphc.200390004Search in Google Scholar PubMed

[33] G. Herink, D. R. Solli, M. Gulde, and C. Ropers. Field-driven photoemission from nanostructures quenches the quiver motion. Nature, 483(7388):190-193, 2012.10.1038/nature10878Search in Google Scholar PubMed

[34] M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff. Attosecond physics in photoemission from a metal nanotip. Journal of Physics B: Atomic,Molecular andOptical Physics, 45(7):074006, 2012.10.1088/0953-4075/45/7/074006Search in Google Scholar

[35] A. Husakou, S.-J. Im, and J. Herrmann. Theory of plasmonenhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A, 83(4):043839, 2011.10.1103/PhysRevA.83.043839Search in Google Scholar

[36] M. F. Ciappina, T. Shaaran, and M. Lewenstein. High order harmonic generation in noble gases using plasmonic field enhancement. Annalen der Physik, 525(1-2):97-106, 2013.10.1002/andp.201200190Search in Google Scholar

[37] A. Husakou, F. Kelkensberg, J. Herrmann, and M. J. J. Vrakking. Polarization gating and circularly-polarized high harmonic generation using plasmonic enhancement in metal nanostructures. Opt. Express, 19(25):25346-25354, 2011.10.1364/OE.19.025346Search in Google Scholar PubMed

[38] N. Pfullmann. Nano-antenna-assisted high-order harmonic generation. Dissertation, GottfriedWilhelm Leibniz Universität, Hannover, 2012.Search in Google Scholar

[39] M. Sivis, M. Duwe, B. Abel, and C. Ropers. Nanostructureenhanced atomic line emission. Nature, 485(7397):E1-E2, 2012.10.1038/nature10978Search in Google Scholar PubMed

[40] M. Sivis, M. Duwe, B. Abel, and C. Ropers. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat Phys, 9(5):304-309, 2013.10.1038/nphys2590Search in Google Scholar

[41] I.-Y. Park, J. Choi, D.-H. Lee, S. Han, S. Kim, and S.-W. Kim. Generation of EUV radiation by plasmonic field enhancement using nano-structured bowties and funnel-waveguides. Annalen der Physik, 525(1-2):87-96, 2013.10.1002/andp.201200160Search in Google Scholar

[42] P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl. Resonant optical antennas. Science, 308(5728):1607-1609, 2005.10.1126/science.1111886Search in Google Scholar PubMed

[43] L. Novotny and N. van Hulst. Antennas for light. Nat Photon, 5(2):83-90, 2011.10.1038/nphoton.2010.237Search in Google Scholar

[44] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne. Biosensingwith plasmonic nanosensors. NatMater, 7(6):442-453, 2008.10.1038/nmat2162Search in Google Scholar PubMed

[45] L. Novotny and S. J. Stranick. Near-Field Optical Microscopy and Spectroscopy with Pointed Probes. Annu. Rev. Phys. Chem, 57(1):303-331, 2006.10.1146/annurev.physchem.56.092503.141236Search in Google Scholar PubMed

[46] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green. Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101(9):093105, 2007.10.1063/1.2734885Search in Google Scholar

[47] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A.Maier, and M. S. Kim. Quantumplasmonics. Nat Phys, 9(6):329-340, 2013.10.1038/nphys2615Search in Google Scholar

[48] J. Jahns and S. Helfert. Introduction to micro- and nanooptics. Wiley-VCH-Verl., Weinheim, 2012.Search in Google Scholar

[49] J. D. Jackson. Classical electrodynamics. Wiley, 1975.Search in Google Scholar

[50] L. Novotny. Effective wavelength scaling for optical antennas. Phys. Rev. Lett., 98(26), 2007.10.1103/PhysRevLett.98.266802Search in Google Scholar PubMed

[51] K. C. Y. Huang, Y. C. Jun, M.-K. Seo, and M. L. Brongersma. Power flowfrom a dipole emitter near an optical antenna. Opt. Express, 19(20):19084-19092, 2011.10.1364/OE.19.019084Search in Google Scholar PubMed

[52] E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso. Plasmonic Laser Antennas and Related Devices. IEEE Journal of Selected Topics in Quantum Electronics, 14(6):1448-1461, 2008.10.1109/JSTQE.2007.912747Search in Google Scholar

[53] K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate. Optical antennas: Resonators for local field enhancement. J. Appl. Phys., 94(7):4632-4642, 2003.Search in Google Scholar

[54] R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant. Charge distribution induced inside complex plasmonic nanoparticles. Opt. Express, 18(3):3035-3044, 2010.10.1364/OE.18.003035Search in Google Scholar PubMed

[55] J. Merlein. Lineare und nichtlineare Nanoplasmonik. Dissertation, Universität Konstanz, 2008.Search in Google Scholar

[56] D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. S. Kino, and W. E. Moerner. Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible. Nano Lett, 4(5):957-961, 2004.10.1021/nl049951rSearch in Google Scholar

[57] P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner. Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas. Phys. Rev. Lett., 94(1):017402, 2005.10.1103/PhysRevLett.94.017402Search in Google Scholar PubMed

[58] H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Express, 16(11):7756-7766, 2008.10.1364/OE.16.007756Search in Google Scholar PubMed

[59] S. Park, J.W. Hahn, and J. Y. Lee. Doubly resonant metallic nanostructure for high conversion eflciency of second harmonic generation. Opt. Express, 20(5):4856-4870, 2012.10.1364/OE.20.004856Search in Google Scholar PubMed

[60] J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huillier, K. J. Schafer, and M. B. Gaarde. Attosecond Pulse Trains Generated Using Two Color Laser Fields. Phys. Rev. Lett., 97(1):013001, 2006.10.1103/PhysRevLett.97.013001Search in Google Scholar

[61] I.-Y. Park, S. Kim, J. Choi, D.-H. Lee, Y.-J. Kim, M. F. Kling, M. I. Stockman, and S.-W. Kim. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat Photon, 5(11):677-681, 2011.10.1038/nphoton.2011.258Search in Google Scholar

[62] N. Pfullmann, C. Waltermann, M. Kovačev, V. Knittel, R. Bratschitsch, D. Akemeier, A. Hütten, A. Leitenstorfer, and U. Morgner. Nano-antenna-assisted harmonic generation. Appl. Phys. B, 113(1):75-79, 2013.10.1007/s00340-013-5424-3Search in Google Scholar

[63] Y.-Y. Yang, A. Scrinzi, A. Husakou, Q.-G. Li, S. L. Stebbings, F. Süßmann, H.-J. Yu, S. Kim, E. Rühl, J. Herrmann, X.-C. Lin, and M. F. Kling. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express, 21(2):2195-2205, 2013.10.1364/OE.21.002195Search in Google Scholar

[64] T. Shaaran, M. F. Ciappina, and M. Lewenstein. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement. Phys. Rev. A, 86(2):023408, 2012.10.1103/PhysRevA.86.023408Search in Google Scholar

[65] M. F. Ciappina, J. Biegert, R. Quidant, and M. Lewenstein. Highorder- harmonic generation from inhomogeneous fields. Phys. Rev. A, 85(3):033828, 2012.10.1103/PhysRevA.85.033828Search in Google Scholar

[66] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B.W. Shore, and M. D. Perry. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 53(4):1749-1761, 1996.10.1103/PhysRevB.53.1749Search in Google Scholar

[67] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80(18):4076-4079, 1998.10.1103/PhysRevLett.80.4076Search in Google Scholar

[68] S. I. Anisimov, B. L. Kapeliov, and T. L. Perelman. Electron- Emission From Surface of Metals Induced By Ultrashort Laser Pulses. Zh. Eksp. Teor. Fiz., 66(2):776-781, 1974.Search in Google Scholar

[69] J. König, S. Nolte, and A. Tünnermann. Plasma evolution during metal ablation with ultrashort laser pulses. Opt. Express, 13(26):10597-10607, 2005.10.1364/OPEX.13.010597Search in Google Scholar

[70] D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski. Lasersolid interaction in the femtosecond time regime. Appl. Surf. Sci., 109:1-10, 1997.10.1016/S0169-4332(96)00611-3Search in Google Scholar

[71] H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 57(18):11334-11340, 1998.10.1103/PhysRevB.57.11334Search in Google Scholar

[72] J. Huang, Y. Zhang, J. K. Chen, and M. Yang. Ultrafast solid-liquidvapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains. Front. Energy, 6(1):1-11, 2012.10.1007/s11708-012-0179-9Search in Google Scholar

[73] P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett., 61(25):2886-2889, 1988.10.1103/PhysRevLett.61.2886Search in Google Scholar

[74] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A, 63(2):109-115, 1996.10.1007/BF01567637Search in Google Scholar

[75] Y. Jee, M. F. Becker, and R. M. Walser. Laser-induced damage on single-crystal metal surfaces. J. Opt. Soc. Am. B, 5(3):648-659, 1988.10.1364/JOSAB.5.000648Search in Google Scholar

[76] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B.W. Shore, and M. D. Perry. Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B, 13(2):459-468, 1996.10.1364/JOSAB.13.000459Search in Google Scholar

[77] C. Kern. ExtremeNonlinear Optics with Spatially Controlled Light Fields. Dissertation, Friedrich-Schiller-Universität, Jena, 2014.Search in Google Scholar

[78] J. Güdde, J. Hohlfeld, J. G. Müller, and E. Matthias. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Appl. Surf. Sci., 127-129(0):40-45, 1998.10.1016/S0169-4332(98)00002-6Search in Google Scholar

[79] J. Bonse, J. M. Wrobel, J. Krüger, and W. Kautek. Ultrashortpulse laser ablation of indium phosphide in air. Appl. Phys. A, 72(1):89-94, 2001.10.1007/s003390000596Search in Google Scholar

[80] X. Ni, C.-Y. Wang, Li Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang. Parametric study on femtosecond laser pulse ablation of Au films. Appl. Surf. Sci., 253(3):1616-1619, 2006.10.1016/j.apsusc.2006.02.053Search in Google Scholar

[81] J. M. Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett., 7(5):196-198, 1982.10.1364/OL.7.000196Search in Google Scholar

[82] J. Krüger, D. Dufft, R. Koter, and A. Hertwig. Femtosecond laserinduced damage of gold films: Photon-Assisted Synthesis and Processing of Functional Materials - E-MRS-H Symposium. Appl. Surf. Sci., 253(19):7815-7819, 2007.Search in Google Scholar

[83] D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surf. Sci., 150(1-4):101-106, 1999.Search in Google Scholar

[84] A. M. Summers, A. S. Ramm, G. Paneru, M. F. Kling, B. N. Flanders, and C. A. Trallero-Herrero. Optical damage threshold of au nanowires in strong femtosecond laser fields. Opt. Express, 22(4):4235-4246, 2014.10.1364/OE.22.004235Search in Google Scholar PubMed

[85] J. Chen, W.-K. Chen, J. Tang, and P. M. Rentzepis. Time-resolved structural dynamics of thin metal films heated with femtosecond optical pulses. Proc. Natl. Acad. Sci. U.S.A., 108(47):18887-18892, 2011.10.1073/pnas.1115237108Search in Google Scholar PubMed PubMed Central

[86] C. de Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame. Surface Properties of Femtosecond Laser Ablated PMMA. ACS Appl. Mater. Interfaces, 2(8):2377-2384, 2010.10.1021/am100393eSearch in Google Scholar PubMed

[87] C. Kern, M. Zürch, J. Petschulat, T. Pertsch, B. Kley, T. Käsebier, U. Hübner, and C. Spielmann. Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Autargets. Appl. Phys. A, 104(1):15-21, 2011.10.1007/s00339-011-6449-2Search in Google Scholar

[88] D. Cialla, R. Siebert, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tünnermann, T. Pertsch, B. Dietzek, and J. Popp. Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhancedRamanscattering substrates. Anal. Bioanal. Chem., 394(7):1811-1818, 2009.10.1007/s00216-009-2749-1Search in Google Scholar PubMed

[89] A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg. Femtosecond laser near-field ablation from gold nanoparticles. Nat Phys, 2(1):44-47, 2006.10.1038/nphys191Search in Google Scholar

[90] A. Plech, P. Leiderer, and J. Boneberg. Femtosecond laser near field ablation. Laser & Photon. Rev., 3(5):435-451, 2009.10.1002/lpor.200810044Search in Google Scholar

[91] V. K. Valev, D. Denkova, X. Zheng, A. I. Kuznetsov, C. Reinhardt, B. N. Chichkov, G. Tsutsumanova, E. J. Osley, V. Petkov, B. de Clercq, A. V. Silhanek, Y. Jeyaram, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, S. Russev, O. A. Aktsipetrov, M. Ameloot, V. V. Moshchalkov, and T. Verbiest. Plasmon-Enhanced Sub- Wavelength Laser Ablation: Plasmonic Nanojets. AdvancedMaterials, 24(10):OP29-OP35, 2012.Search in Google Scholar

[92] N. Pfullmann, M. Noack, J. de Cardoso Andrade, S. Rausch, T. Nagy, C. Reinhardt, V. Knittel, R. Bratschitsch, A. Leitenstorfer, D. Akemeier, A. Hütten, M. Kovačev, and U. Morgner. Nanoantennae assisted emission of extreme ultraviolet radiation. Annalen der Physik, 2014.10.1088/1367-2630/15/9/093027Search in Google Scholar

[93] M. J. Weber. Handbook of optical materials. CRC Press, Boca Raton, 2003.Search in Google Scholar

[94] G. Xu, Y. Chen, M. Tazawa, and P. Jin. Influence of dielectric properties of a substrate upon plasmon resonance spectrum of supported Ag nanoparticles. Appl. Phys. Lett, 88(4):043114, 2006. 10.1063/1.2167827Search in Google Scholar

Received: 2014-11-28
Accepted: 2015-5-21
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.3.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0013/html
Scroll to top button