Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

  • Urcan Guler , Sergey Suslov , Alexander V. Kildishev , Alexandra Boltasseva and Vladimir M. Shalaev EMAIL logo
From the journal Nanophotonics

Abstract

Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

References

[1] Chithrani B.D., Ghazani A.A., Chan W.C.W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters. 2006, 2006/04/01, 6(4): 662-8.Search in Google Scholar

[2] Boltasseva A., Atwater H.A., Materials science. Low-loss plasmonic metamaterials, Science 2011, 331(6015): 290-1.10.1126/science.1198258Search in Google Scholar

[3] Naik G.V., Shalaev V.M., Boltasseva A., Alternative plasmonic materials: beyond gold and silver, Adv Mater. 2013; 25(24): 3264-94.Search in Google Scholar

[4] Wittmer M., Properties and microelectronic applications of thin films of refractory metal nitrides, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1985, 3(4): 1797-803.10.1116/1.573382Search in Google Scholar

[5] Tang T.E., Che-Chia W., Haken R.A., Holloway T.C., Hite L.R., Blake T.G.W., Titanium nitride local interconnect technology for VLSI, Electron Devices, IEEE Transactions on. 1987, 34(3): 682-8.Search in Google Scholar

[6] Tompkins H.G., Gregory R., Boeck B., Optical properties of titanium nitride thin films, Surface and Interface Analysis 1991, 17(1): 22-4.10.1002/sia.740170107Search in Google Scholar

[7] Steinmüller-Nethl D., Kovacs R., Gornik E., Rödhammer P., Excitation of surface plasmons on titaniumnitride films: determination of the dielectric function, Thin Solid Films 1994, 237(1): 277-81.10.1016/0040-6090(94)90273-9Search in Google Scholar

[8] Hibbins A.P., Sambles J.R., Lawrence C.R., Surface plasmonpolariton study of the optical dielectric function of titaniumnitride, Journal of Modern Optics 1998, 45(10): 2051-62.10.1080/09500349808231742Search in Google Scholar

[9] Chen N.C., Lien W.C., Liu C.R., Huang Y.L., Lin Y.R., Chou C., et al., Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry, Journal of Applied Physics 2011, 109(4): 043104-7.10.1063/1.3549732Search in Google Scholar

[10] Naik G.V., Schroeder J.L., Ni X., Kildishev A.V., Sands T.D., Boltasseva A., Titaniumnitride as a plasmonicmaterial for visible and near-infrared wavelengths, Optical Materials Express 2012, 2(4): 478-89.10.1364/OME.2.000478Search in Google Scholar

[11] Naik G.V., Saha B., Liu J., Saber S.M., Stach E.A., Irudayaraj J.M.K., et al., Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials, Proceedings of the National Academy of Sciences 2014May 12, 2014.10.1073/pnas.1319446111Search in Google Scholar PubMed PubMed Central

[12] Kinsey N., Ferrera M., Naik G.V., Babicheva V.E., Shalaev V.M., Boltasseva A., Experimental demonstration of titanium nitride plasmonic interconnects, Optics Express 2014 2014/05/19, 22(10): 12238-47.10.1364/OE.22.012238Search in Google Scholar PubMed

[13] Guler U., Boltasseva A., Shalaev V.M., Refractory Plasmonics, Science 2014, 344(6181): 263-4.10.1126/science.1252722Search in Google Scholar PubMed

[14] Guler U., Shalaev V.M., Boltasseva A., Nanoparticle plasmonics: going practicalwith transition metal nitrides,Materials Today 2015, 18(4): 227-37.10.1016/j.mattod.2014.10.039Search in Google Scholar

[15] Quinten M., The color of finely dispersed nanoparticles, Applied Physics B. 2001, 2001/09/01, 73(4): 317-26.Search in Google Scholar

[16] Reinholdt A., Pecenka R., Pinchuk A., Runte S., Stepanov A.L., Weirich T.E., et al., Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles; The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 2004, 2004/10/01, 31(1): 69-76.10.1140/epjd/e2004-00129-8Search in Google Scholar

[17] Guler U., Naik G.V., Boltasseva A., Shalaev V.M., Kildishev A.V., Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications, Applied Physics B. 2012, 2012/05/01, 107(2): 285-91.Search in Google Scholar

[18] Guler U., Ndukaife J.C., Naik G.V., Nnanna A.G.A., Kildishev A.V., Shalaev V.M., et al., Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles, Nano Letters 2013, 13(12): 6078-83.10.1021/nl4033457Search in Google Scholar PubMed

[19] Li W., Guler U., Kinsey N., Naik G.V., Boltasseva A., Guan J., et al., Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber, Advanced Materials 2014, 26(47): 7959-65.10.1002/adma.201401874Search in Google Scholar PubMed

[20] Guler U., Kildishev A.V., Boltasseva A., Shalaev V.M., Plasmonics on the slope of enlightenment: the role of transition metal nitrides, Faraday Discussions 2015, 178(0): 71-86.10.1039/C4FD00208CSearch in Google Scholar

[21] Zhou N., Xu X., Hammack Aaron T., Stipe Barry C., Gao K., Scholz W., et al., Plasmonic near-field transducer for heatassisted magnetic recording, Nanophotonics 2014, 3(3): 141-55.10.1515/nanoph-2014-0001Search in Google Scholar

[22] Bauer T., Thermophotovoltaics: Basic Principles and Critical Aspects of System Design, Berlin, Germany: Springer-Verlag; 2011. 222 p.10.1007/978-3-642-19965-3Search in Google Scholar

[23] Clavero C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices, Nat Photon. 2014, 8(2): 95-103.10.1038/nphoton.2013.238Search in Google Scholar

[24] Linic S., Christopher P., Ingram D.B., Plasmonic-metal nanostructures for eflcient conversion of solar to chemical energy, Nat Mater. 2011, 10(12): 911-21.Search in Google Scholar

[25] Mukherjee S., Libisch F., Large N., Neumann O., Brown L.V., Cheng J., et al., Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au, Nano Letters 2012, 2013/01/09, 13(1): 240-7.10.1021/nl303940zSearch in Google Scholar PubMed

[26] Boyd D.A., Greengard L., Brongersma M., El-Naggar M.Y., Goodwin D.G., Plasmon-Assisted Chemical Vapor Deposition, Nano Letters. 2006, 6(11): 2592-7.Search in Google Scholar

[27] Wakabayashi H., Saito Y., Takeuchi K., Mogami T., Kunio T., A dual-metal gate CMOS technology using nitrogenconcentration- controlled TiNx film, Electron Devices, IEEE Transactions on. 2001, 48(10): 2363-9. Search in Google Scholar

[28] Dong S., Chen X., Gu L., Zhang L., Zhou X., Liu Z., et al., A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion, Biosensors and Bioelectronics 2011, 26(10): 4088-94.10.1016/j.bios.2011.03.040Search in Google Scholar PubMed

[29] Hyde G.K., McCullen S.D., Jeon S., Stewart S.M., Jeon H., Loboa E.G., et al., Atomic layer deposition and biocompatibility of titanium nitride nano-coatings on cellulose fiber substrates, Biomedical Materials 2009, 4(2): 025001.10.1088/1748-6041/4/2/025001Search in Google Scholar

[30] Wisbey A., Gregson P.J., Tuke M., Application of PVD TiN coating to Co-Cr-Mo based surgical implants, Biomaterials 1987, 8(6): 477-80.10.1016/0142-9612(87)90085-8Search in Google Scholar

[31] Li J., Gao L., Sun J., Zhang Q., Guo J., Yan D., Synthesis of Nanocrystalline TitaniumNitride Powders by Direct Nitridation of Titanium Oxide, Journal of the American Ceramic Society 2001, 84(12): 3045-7.10.1111/j.1151-2916.2001.tb01136.xSearch in Google Scholar

[32] Saha N.C., Tompkins H.G., Titanium nitride oxidation chemistry: An xray photoelectron spectroscopy study, Journal of Applied Physics 1992, 72(7): 3072-9.10.1063/1.351465Search in Google Scholar

[33] Jaque D., Martinez Maestro L., del Rosal B., Haro-Gonzalez P., Benayas A., Plaza J.L., et al., Nanoparticles for photothermal therapies, Nanoscale 2014, 6(16): 9494-530.10.1039/C4NR00708ESearch in Google Scholar PubMed

[34] Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., et al., Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol Cancer Res Treat. 2004 Feb, 3(1): 33-40.Search in Google Scholar

[35] Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences 2003, 100(23): 13549-54.10.1073/pnas.2232479100Search in Google Scholar PubMed PubMed Central

[36] Hirsch L.R., Jackson J.B., Lee A., Halas N.J., West J.L., A Whole Blood Immunoassay Using Gold Nanoshells, Analytical Chemistry 2003, 2003/05/01, 75(10): 2377-81.10.1021/ac0262210Search in Google Scholar PubMed

[37] Huang P., Lin J., Li W., Rong P., Wang Z., Wang S., et al., Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy, Angewandte Chemie International Edition 2013, 52(52): 13958-64.10.1002/anie.201308986Search in Google Scholar PubMed PubMed Central

[38] Goodman A.M., Cao Y., Urban C., Neumann O., Ayala-Orozco C., Knight M.W., et al., The Surprising in Vivo Instability of Near-IR-Absorbing HollowAu-Ag Nanoshells, ACS Nano. 2014, 2014/04/22, 8(4): 3222-31.Search in Google Scholar

[39] Xie J., Lee S., Chen X., Nanoparticle-based theranostic agents, Advanced Drug Delivery Reviews 2010, 62(11): 1064-79.10.1016/j.addr.2010.07.009Search in Google Scholar PubMed PubMed Central

[40] Li Z., Huang P., Zhang X., Lin J., Yang S., Liu B., et al., RGDConjugated Dendrimer-Modified Gold Nanorods for in Vivo Tumor Targeting and Photothermal Therapy†, Molecular Pharmaceutics 2009, 2010/02/01, 7(1): 94-104.10.1021/mp9001415Search in Google Scholar PubMed

[41] Dasgupta S., Auth T., Gompper G., Shape and OrientationMatter for the Cellular Uptake of Nonspherical Particles, Nano Letters 2014, 2014/02/12, 14(2): 687-93. 10.1021/nl403949hSearch in Google Scholar PubMed

[42] Takada N., Sasaki T., Sasaki K., Synthesis of crystalline TiN and Si particles by laser ablation in liquid nitrogen, Applied Physics A 2008, 2008/12/01, 93(4): 833-6.10.1007/s00339-008-4748-zSearch in Google Scholar

[43] Yang X., Li C., Yang L., Yan Y., Qian Y., Reduction-Nitridation Synthesis of Titanium Nitride Nanocrystals, Journal of the American Ceramic Society 2003, 86(1): 206-8.10.1111/j.1151-2916.2003.tb03308.xSearch in Google Scholar

[44] George P.P., Gedanken A., Makhlouf S.-D., Genish I., Marciano A., Abu-Mukh R., Synthesis and characterization of titanium nitride, niobium nitride, and tantalum nitride nanocrystals via the RAPET (reaction under autogenic pressure at elevated temperature) technique; Journal of Nanoparticle Research 2009, 2009/05/01, 11(4): 995-1003.10.1007/s11051-008-9550-5Search in Google Scholar

[45] Calka A., Formation of titanium and zirconium nitrides by mechanical alloying, Applied Physics Letters 1991, 59(13): 1568-9.10.1063/1.106285Search in Google Scholar

[46] Kumar S., Murugan K., Chandrasekhar S.B., Hebalkar N., Krishna M., Satyanarayana B.S., et al., Synthesis and characterization of nano silicon and titanium nitride powders using atmospheric microwave plasma technique, Journal of Chemical Sciences 2012, 2012/05/01, 124(3): 557-63.10.1007/s12039-012-0256-ySearch in Google Scholar

[47] Dekker J.P., van der Put P.J., Veringa H.J., Schoonman J., Vapour-phase synthesis of titanium nitride powder, Journal of Materials Chemistry 1994, 4(5): 689-94.10.1039/jm9940400689Search in Google Scholar

[48] Aghababazadeh R., Mirhabibi A.R., Rand B., Banijamali S., Pourasad J., Ghahari M., Synthesis and characterization of nanocrystalline titanium nitride powder from rutile and anatase as precursors, Surface Science 2007, 601(13): 2881-5.10.1016/j.susc.2006.12.038Search in Google Scholar

[49] Egerton R.F., Electron energy-loss spectroscopy in the TEM, Reports on Progress in Physics 2009, 72(1): 016502.10.1088/0034-4885/72/1/016502Search in Google Scholar

[50] Reddy B.V., Khanna S.N., Structure and stability of TinNm clusters, Physical Review B 1996, 54(3): 2240-3.10.1103/PhysRevB.54.2240Search in Google Scholar PubMed

[51] Weir A., Westerhoff P., Fabricius L., Hristovski K., von Goetz N., Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology 2012, 2012/02/21, 46(4): 2242-50.10.1021/es204168dSearch in Google Scholar PubMed PubMed Central

[52] Tompkins H.G., The initial stages of the oxidation of titanium nitride, Journal of Applied Physics 1992, 71(2): 980-3.10.1063/1.351324Search in Google Scholar

[53] Bannister F.A., Osbornite, meteoric titanium nitride, Mineralogical Magazine 1941, 26: 36-44.10.1180/minmag.1941.026.173.02Search in Google Scholar

[54] Stuart H.R., Hall D.G., Island size effects in nanoparticleenhanced photodetectors, Applied Physics Letters 1998, 73(26): 3815-7.10.1063/1.122903Search in Google Scholar

[55] Bohren C., Huffman D., Absorption and Scattering of Light by Small Particles (Wiley science paperback series): Wiley-VCH, 1998. 10.1002/9783527618156Search in Google Scholar

Received: 2014-10-28
Accepted: 2015-6-21
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.5.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0017/html
Scroll to top button