Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

Ultrafast carrier dynamics in Landau-quantized graphene

  • Florian Wendler , Andreas Knorr and Ermin Malic EMAIL logo
From the journal Nanophotonics


In an external magnetic field, the energy of massless charge carriers in graphene is quantized into non-equidistant degenerate Landau levels including a zero-energy level. This extraordinary electronic dispersion gives rise to a fundamentally new dynamics of optically excited carriers. Here, we review the state of the art of the relaxation dynamics in Landau-quantized graphene focusing on microscopic insights into possible many-particle relaxation channels.We investigate optical excitation into a non equilibrium distribution followed by ultrafast carrier- carrier and carrier-phonon scattering processes. We reveal that surprisingly the Auger scattering dominates the relaxation dynamics in spite of the non-equidistant Landau quantization in graphene. Furthermore, we demonstrate how technologically relevant carrier multiplication can be achieved and discuss the possibility of optical gain in Landau-quantized graphene. The provided microscopic view on elementary many-particle processes can guide future experimental studies aiming at the design of novel graphene-based optoelectronic devices, such as highly efficient photodetectors, solar cells, and spectrally broad Landau level lasers.


[1] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari. Graphene photonics and optoelectronics. Nature Photon., 4:611-622, 2010.10.1038/nphoton.2010.186Search in Google Scholar

[2] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater., 6(3):183-191, 2007.10.1038/nmat1849Search in Google Scholar PubMed

[3] A. K. Geim. Graphene: Status and Prospects. Science, 324:1530-1534, 2009.Search in Google Scholar

[4] P. Avouris and C. Dimitrakopoulos. Graphene: synthesis and applications. Mater. Today, 15(3):86 - 97, 2012.Search in Google Scholar

[5] A.J. Van Bommel, J.E. Crombeen, and A. Van Tooren. LEED and Auger electron observations of the SiC(0001) surface. Surf. Sci., 48:463-472, 1975.Search in Google Scholar

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306:666-669, 2004.10.1126/science.1102896Search in Google Scholar PubMed

[7] P. R.Wallace. The Band Theory of Graphite. Phys. Rev., 71:622-634, May 1947.10.1103/PhysRev.71.622Search in Google Scholar

[8] O. Klein. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Zeitschrift für Physik, 53:157-165, 1929.10.1007/BF01339716Search in Google Scholar

[9] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys., 2:620-625, 2006.10.1038/nphys384Search in Google Scholar

[10] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris. Ultrafast graphene photodetector. Nature Nano., 4(12):839-843, 2009.10.1038/nnano.2009.292Search in Google Scholar PubMed

[11] T. Mueller, F. Xia, and P. Avouris. Graphene photodetectors for high-speed optical communications. Nat. Photon., 4(5):297-301, May 2010.10.1038/nphoton.2010.40Search in Google Scholar

[12] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon., 7(11):883-887, 2013.10.1038/nphoton.2013.253Search in Google Scholar

[13] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang. Layer Graphene as a Saturable Absorber for Ul trafast Pulsed Lasers. Adv. Funct.Mater., 19:3077-3083, 2009.10.1002/adfm.200901007Search in Google Scholar

[14] H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh. Large energy soliton erbium-doped fiber laserwith a graphene-polymer composite mode locker. Appl. Phys. Lett., 95(14):141103, 2009.10.1063/1.3244206Search in Google Scholar

[15] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari. Graphene Mode- Locked Ultrafast Laser. ACS Nano, 4(2):803-810, 2010.10.1021/nn901703eSearch in Google Scholar PubMed

[16] X. Wang, L. Zhi, and K. Müllen. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett., 8(1):323-327, 2008. PMID: 18069877.10.1021/nl072838rSearch in Google Scholar PubMed

[17] Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen. Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Adv. Mat., 20(20):3924-3930, 2008.Search in Google Scholar

[18] P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson. Graphene and Mobile Ions: The Key to All- Plastic, Solution-Processed Light-Emitting Devices. ACS Nano, 4(2):637-642, 2010. PMID: 20131906.Search in Google Scholar

[19] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nano., 5(8):574-578, August 2010.10.1038/nnano.2010.132Search in Google Scholar PubMed

[20] T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf. Strongly Coupled Optical Phonons in the Ultrafast Dynamics of the Electronic Energy and Current Relaxation in Graphite. Phys. Rev. Lett., 95:187403, 2005.10.1103/PhysRevLett.95.187403Search in Google Scholar PubMed

[21] S. Butscher, F. Milde, M. Hirtschulz, E.Malić, and A. Knorr. Hot electron relaxation and phonon dynamics in graphene. Appl. Phys. Lett., 91(20):203103, 2007.10.1063/1.2809413Search in Google Scholar

[22] J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett., 92:042116, 2008.10.1063/1.2837539Search in Google Scholar

[23] D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris. Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission Spectroscopy. Phys. Rev. Lett., 101:157402, 2008.10.1103/PhysRevLett.101.157402Search in Google Scholar PubMed

[24] F. Rana, P. A. George, J. H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M. G. Spencer. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys. Rev. B, 79:115447, 2009.10.1103/PhysRevB.79.115447Search in Google Scholar

[25] S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm. Carrier Relaxation in Epitaxial Graphene Photoexcited Near the Dirac Point. Phys. Rev. Lett., 107:237401, 2011.10.1103/PhysRevLett.107.237401Search in Google Scholar PubMed

[26] M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B, 83:153410, 2011.10.1103/PhysRevB.83.153410Search in Google Scholar

[27] R. Kim, V. Perebeinos, and P. Avouris. Relaxation of optically excited carriers in graphene. Phys. Rev. B, 84:075449, 2011.10.1103/PhysRevB.84.075449Search in Google Scholar

[28] T. Winzer, A. Knorr, M. Mittendorff, S. Winnerl, M.-B. Lien, D. Sun, T. B. Norris, M. Helm, and E. Malic. Absorption saturation in optically excited graphene. Appl. Phys. Lett., 101(22):221115, 2012.10.1063/1.4768780Search in Google Scholar

[29] E. Malic, T. Winzer, and A. Knorr. Eflcient orientational carrier relaxation in optically excited graphene. Appl. Phys. Lett., 101(21):213110, 2012 10.1063/1.4767356Search in Google Scholar

[30] D. Sun, C. Divin, M. Mihnev, T. Winzer, E. Malic, A. Knorr, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris. Current relaxation due to hot carrier scattering in graphene. New J. Phys., 14(10):105012, 2012.10.1088/1367-2630/14/10/105012Search in Google Scholar

[31] I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater., 12(12):1119-1124, 2013.10.1038/nmat3757Search in Google Scholar PubMed

[32] S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm, T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M. Sprinkle, C. Berger, and W. A. de Heer. Time-resolved spectroscopy on epitaxial graphene in the infrared spectral range: relaxation dynamics and saturation behavior. J. Phys. Condens. Matter, 25(5):054202, 2013.Search in Google Scholar

[33] J. C. Johannsen, S. Ulstrup, F. Cilento, A. Crepaldi, M. Zacchigna, C. Cacho, I. C. E. Turcu, E. Springate, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, and P. Hofmann. Direct View of Hot Carrier Dynamics in Graphene. Phys. Rev. Lett., 111:027403, 2013.10.1103/PhysRevLett.111.027403Search in Google Scholar PubMed

[34] T. Winzer, E. Malić, and A. Knorr. Microscopic mechanism for transient population inversion and optical gain in graphene. Phys. Rev. B, 87:165413, 2013.10.1103/PhysRevB.87.165413Search in Google Scholar

[35] F. Kadi, T.Winzer, E.Malic, A. Knorr, F. Göttfert, M. Mittendorff, S.Winnerl, and M. Helm. Microscopic Description of Intraband Absorption in Graphene: The Occurrence of Transient Negative Differential Transmission. Phys. Rev. Lett., 113:035502, 2014.Search in Google Scholar

[36] M. Mittendorff, T. Winzer, E. Malic, A. Knorr, C. Berger, W. A. de Heer, H. Schneider, M. Helm, and S. Winnerl. Anisotropy of Excitation and Relaxation of Photogenerated Charge Carriers in Graphene. Nano Lett., 14(3):1504-1507, 2014.10.1021/nl404730ySearch in Google Scholar PubMed

[37] T. Winzer, R. Ciesielski, M. Handloser, A. Comin, A. Hartschuh, and E. Malic. Microscopic View on the Ultrafast Photoluminescence from Photoexcited Graphene. Nano Lett., 15(2):1141-1145, 2015.10.1021/nl504176zSearch in Google Scholar PubMed

[38] E.Malic and A. Knorr. Graphene and Carbon Nanotubes: Ultrafast Optics and Relaxation Dynamics. Wiley-VCH, 2013.10.1002/9783527658749Search in Google Scholar

[39] E.Malic, T.Winzer, E. Bobkin, and A. Knorr. Microscopic theory of absorption and ultrafastmany-particle kinetics in graphene. Phys. Rev. B, 84:205406, 2011.10.1103/PhysRevB.84.205406Search in Google Scholar

[40] F. Rana. Electron-hole generation and recombination rates for Coulomb scattering in graphene. Phys. Rev. B, 76:155431, 2007.10.1103/PhysRevB.76.155431Search in Google Scholar

[41] T. Winzer, A. Knorr, and E. Malic. Carrier Multiplication in Graphene. Nano Lett., 10:4839-4843, 2010.10.1021/nl1024485Search in Google Scholar

[42] T. Winzer and E. Malic. Impact of Auger processes on carrier dynamics in graphene. Phys. Rev. B, 85:241404, 2012.10.1103/PhysRevB.85.241404Search in Google Scholar

[43] D. Brida, A. Tomadin, C.Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun., 4:1987, 2013.10.1038/ncomms2987Search in Google Scholar

[44] T. Plötzing, T. Winzer, E. Malic, D. Neumaier, A. Knorr, and H. Kurz. Experimental Verification of Carrier Multiplication in Graphene. Nano Lett., 14(9):5371-5375, 2014. PMID: 25144320.10.1021/nl502114wSearch in Google Scholar

[45] A. J. Nozik. Quantum dot solar cells. Physica E, 14:115 - 120, 2002.10.1016/S1386-9477(02)00374-0Search in Google Scholar

[46] V. Ryzhii, M. Ryzhii, and T. Otsuji. Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys., 101:083114, 2007. 10.1063/1.2717566Search in Google Scholar

[47] T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang. Femtosecond Population Inversion and Stimulated Emission of Dense Dirac Fermions in Graphene. Phys. Rev. Lett., 108:167401, 2012.10.1103/PhysRevLett.108.167401Search in Google Scholar PubMed

[48] S. Boubanga-Tombet, S. Chan, T.Watanabe, A. Satou, V. Ryzhii, and T. Otsuji. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Phys. Rev. B, 85:035443, 2012.10.1103/PhysRevB.85.035443Search in Google Scholar

[49] R. Jago, T. Winzer, A. Knorr, and E. Malic. Graphene as gain medium for broadband lasers. Phys. Rev. B, 92:085407.10.1103/PhysRevB.92.085407Search in Google Scholar

[50] F. D. M. Haldane. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett., 61:2015-2018, 1988.Search in Google Scholar

[51] M. L. Sadowski, G.Martinez, M. Potemski, C. Berger, andW. A. de Heer. Landau Level Spectroscopy of Ultrathin Graphite Layers. Phys. Rev. Lett., 97:266405, 2006.10.1103/PhysRevLett.97.266405Search in Google Scholar PubMed

[52] P. Plochocka, C. Faugeras, M. Orlita, M. L. Sadowski, G. Martinez, M. Potemski, M. O. Goerbig, J.-N. Fuchs, C. Berger, and W. A. de Heer. High-Energy Limit of Massless Dirac Fermions in Multilayer Graphene using Magneto-Optical Transmission Spectroscopy. Phys. Rev. Lett., 100:087401, 2008.10.1103/PhysRevLett.100.087401Search in Google Scholar PubMed

[53] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski. Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene. Phys. Rev. Lett., 101:267601, 2008.10.1103/PhysRevLett.101.267601Search in Google Scholar PubMed

[54] D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A.A. Stroscio. Observing the Quantization of ZeroMass Carriers in Graphene. Science, 324:924-927, 2009.10.1126/science.1171810Search in Google Scholar PubMed

[55] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Twodimensional gas of massless Dirac fermions in graphene. Nature, 438:197-200, 2005.10.1038/nature04233Search in Google Scholar PubMed

[56] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438:201-204, 2005.10.1038/nature04235Search in Google Scholar PubMed

[57] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature, 462:192-195, 2009.10.1038/nature08522Search in Google Scholar PubMed

[58] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim. Observation of the fractional quantum Hall effect in graphene. Nature, 462:196-199, 2009.10.1038/nature08582Search in Google Scholar PubMed

[59] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim. Cloning of Dirac fermions in graphene superlattices. Nature, 497:594-597, 2013.10.1038/nature12187Search in Google Scholar PubMed

[60] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature, 497:598-602, 2013.10.1038/nature12186Search in Google Scholar PubMed

[61] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science, 340:1427-1430, 2013.10.1126/science.1237240Search in Google Scholar PubMed

[62] I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. van derMarel, and A. B. Kuzmenko. Giant Faraday rotation in single- and multilayer graphene. Nat. Phys., 7:48-51, 2011.10.1038/nphys1816Search in Google Scholar

[63] C. Drexler, S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F.Muller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. M. Ajayan, J. Kono, and S. D. Ganichev. Magnetic quantum ratchet effect in graphene. Nat. Nano., 8:104-107, 2013.10.1038/nnano.2012.231Search in Google Scholar PubMed

[64] Y. Kawano. Wide-band frequency-tunable terahertz and infrared detection with graphene. Nanotechnol., 24:214004, 2013.10.1088/0957-4484/24/21/214004Search in Google Scholar PubMed

[65] M. O. Goerbig. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys., 83:1193-1243, 2011.10.1103/RevModPhys.83.1193Search in Google Scholar

[66] P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C. Berger, W. A. de Heer, and M. Potemski. Slowing hot-carrier relaxation in graphene using a magnetic field. Phys. Rev. B, 80:245415, 2009.10.1103/PhysRevB.80.245415Search in Google Scholar

[67] M. Mittendorff, M. Orlita, M. Potemski, C. Berger,W. A. de Heer, H. Schneider, M. Helm, and S. Winnerl. Intraband carrier dynamics in Landau-quantized multilayer epitaxial graphene. New J. Phys., 16:123021, 2014.10.1088/1367-2630/16/12/123021Search in Google Scholar

[68] Z.-W. Wang, L. Liu, L. Shi, X.-J. Gong, W.-P. Li, and K. Xu. The Temperature Dependence of Optical Phonon Scattering in Graphene under Strong Magnetic Field. J. Phys. Soc. Jpn., 82:094606, 2013.10.7566/JPSJ.82.094606Search in Google Scholar

[69] Z.-W. Wang, L. Liu, and Z.-Q. Li. Fast two-phonon relaxation process between the Landau levels of graphene on different polar substrates. Europhys. Lett., 108:36005, 2014.10.1209/0295-5075/108/36005Search in Google Scholar

[70] M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Orlita, M. Potemski, C. Berger, W. A. de Heer, H. Schneider, M. Helm, and S. Winnerl. Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nature Phys., 11:75-81, 2015. 10.1038/nphys3164Search in Google Scholar

[71] F. Wendler, A. Knorr, and E. Malic. Resonant carrier-phonon scattering in graphene under Landau quantization. Appl. Phys. Lett., 103(25):253117, 2013.10.1063/1.4852635Search in Google Scholar

[72] F. Wendler and E. Malic. Carrier-phonon scattering in Landauquantized graphene. Phys. Status Solidi B, 251:2541-2544, 2014.10.1002/pssb.201451371Search in Google Scholar

[73] F. Wendler, A. Knorr, and E. Malic. Carrier multiplication in graphene under Landau quantization. Nature Commun., 5:3703, 2014.10.1038/ncomms4703Search in Google Scholar PubMed

[74] F. Wendler and E. Malic. Towards a tunable graphene-based Landau level laser in the terahertz regime. Sci. Rep., 5:12646, 2015.10.1038/srep12646Search in Google Scholar PubMed PubMed Central

[75] C. Cohen-Tannoudji, B. Diu, and F. Laloë. Quantenmechanik: Band 1. de Gryter, 2009.Search in Google Scholar

[76] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik, 52(7-8):555-600, 1929.10.1007/BF01339455Search in Google Scholar

[77] R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Zeitschrift fuer Physik, 80(11-12):763-791, 1933.10.1007/BF01342591Search in Google Scholar

[78] C. Strahberger. Vertikaler Transport und extreme Magnetfelder in Halbleitern. PhD thesis, Technischen Universitaet Muenchen, 2001.Search in Google Scholar

[79] J. Zak. Magnetic Translation Group. Phys. Rev., 134:A1602- A1606, 1964.10.1103/PhysRev.134.A1602Search in Google Scholar

[80] J. Zak. Weyl-Heisenberg group and magnetic translations in finite phase space. Phys. Rev. B, 39:694-700, 1989.10.1103/PhysRevB.39.694Search in Google Scholar PubMed

[81] D. Yoshioka. The Quantum Hall Effect. Springer Berlin Heidelberg, 2002. 10.1007/978-3-662-05016-3Search in Google Scholar

[82] M. Kohmoto, B. I. Halperin, and Y.-S. Wu. Quantized Hall effect in 3D periodic systems. Physica B: Condensed Matter, 184(1-4):30 - 33, 1993.10.1016/0921-4526(93)90316-XSearch in Google Scholar

[83] D. R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 14:2239-2249, Sep 1976.10.1103/PhysRevB.14.2239Search in Google Scholar

[84] A. Trellakis. Nonperturbative Solution for Bloch Electrons in Constant Magnetic Fields. Phys. Rev. Lett., 91:056405, Aug 2003.10.1103/PhysRevLett.91.056405Search in Google Scholar PubMed

[85] G. H.Wannier. A Result Not Dependent on Rationality for Bloch Electrons in a Magnetic Field. Phys. Status Solidi B, 88:757-765, 1978.10.1002/pssb.2220880243Search in Google Scholar

[86] G. H. Wannier. The Structure of Electronic Excitation Levels in Insulating Crystals. Phys. Rev., 52:191-197, Aug 1937.10.1103/PhysRev.52.191Search in Google Scholar

[87] J. Luttinger. The Effect of a Magnetic Field on Electrons in a Periodic Potential. Phys. Rev., 84:814-817, Nov 1951.10.1103/PhysRev.84.814Search in Google Scholar

[88] W. Kohn. Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian. Phys. Rev., 115:1460, 1959.Search in Google Scholar

[89] G. Gumbs, A. Iurov, D. Huang, and L. Zhemchuzhna. Revealing Hofstadter spectrum for graphene in a periodic potential. Phys. Rev. B, 89:241407, Jun 2014.10.1103/PhysRevB.89.241407Search in Google Scholar

[90] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón. Tightbinding description of graphene. Phys. Rev. B, 66:035412, Jul 2002.10.1103/PhysRevB.66.035412Search in Google Scholar

[91] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109-162, 2009.10.1103/RevModPhys.81.109Search in Google Scholar

[92] Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim. Landau-Level Splitting in Graphene in HighMagnetic Fields. Phys. Rev. Lett., 96:136806, Apr 2006.10.1103/PhysRevLett.96.136806Search in Google Scholar PubMed

[93] L. Onsager. Interpretation of the de Haas-van Alphen effect. Philosophical Magazine Series 7, 43(344):1006-1008, 1952.10.1080/14786440908521019Search in Google Scholar

[94] Y. Lozovik and A. Sokolik. Influence of Landau level mixing on the properties of elementary excitations in graphene in strong magnetic field. Nanoscale Res. Lett., 7:134, 2012.10.1186/1556-276X-7-134Search in Google Scholar PubMed PubMed Central

[95] M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, and C. Thomsen. Phonon dispersion of graphite by inelastic x-ray scattering. Phys. Rev. B, 76:035439, 2007.10.1103/PhysRevB.76.035439Search in Google Scholar

[96] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón. Phonon Dispersion in Graphite. Phys. Rev. Lett., 92:075501, Feb 2004.10.1103/PhysRevLett.92.075501Search in Google Scholar PubMed

[97] K. Michel and B. Verberck. Theory of the evolution of phonon spectra and elastic constants from graphene to graphite. Phys. Rev. B, 78:085424, Aug 2008.10.1103/PhysRevB.78.085424Search in Google Scholar

[98] E. Akkermans and G. Montambaux. Mesoscopic Physics of Electrons and Photons. Cambridge University Press, 2007.10.1017/CBO9780511618833Search in Google Scholar

[99] K. M. Rao and J. E. Sipe. Coherent photocurrent control in graphene in a magnetic field. Phys. Rev. B, 86:115427, 2012.10.1103/PhysRevB.86.115427Search in Google Scholar

[100] R. C. Jones. A New Calculus for the Treatment of Optical Systems. J. Opt. Soc. Am., 31:488-493, 1941.10.1364/JOSA.31.000488Search in Google Scholar

[101] A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini. Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B, 88:035430, 2013.Search in Google Scholar

[102] R. Roldan, J.-N. Fuchs, and M. Goerbig. Collective modes of doped graphene and a standard two-dimensional electron gas in a strong magnetic field: Linear magnetoplasmons versus magnetoexcitons. Phys. Rev. B, 80:085408, Aug 2009. 10.1103/PhysRevB.80.085408Search in Google Scholar

[103] R. Roldan, M. O. Goerbig, and J.-N. Fuchs. The magnetic field particle-hole excitation spectrum in doped graphene and in a standard two-dimensional electron gas. Semicond. Sci. Technol., 25(3):034005, 2010.10.1088/0268-1242/25/3/034005Search in Google Scholar

[104] E. Mariani and F. von Oppen. Temperature-dependent resistivity of suspended graphene. Phys. Rev. B, 82:195403, 2010.10.1103/PhysRevB.82.195403Search in Google Scholar

[105] H. Suzuura and T. Ando. Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B, 65:235412, 2002.10.1103/PhysRevB.65.235412Search in Google Scholar

[106] T. Ando. Anomaly of Optical Phonon in Monolayer Graphene. J. Phys. Soc. Jpn., 75:124701, 2006.10.1143/JPSJ.75.124701Search in Google Scholar

[107] C. L. Kane and E. J. Mele. Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes. Phys. Rev. Lett., 78:1932-1935, 1997.10.1103/PhysRevLett.78.1932Search in Google Scholar

[108] W.-K. Tse and S. Das Sarma. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B, 79:235406, Jun 2009.10.1103/PhysRevB.79.235406Search in Google Scholar

[109] S. Piscanec, M. Lazzeri, F.Mauri, A. C. Ferrari, and J. Robertson. Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett., 93:185503, 2004.10.1103/PhysRevLett.93.185503Search in Google Scholar PubMed

[110] W. Kohn. Image of the Fermi Surface in the Vibration Spectrum of a Metal. Phys. Rev. Lett., 2:393-394, 1959.10.1103/PhysRevLett.2.393Search in Google Scholar

[111] H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, 2009.10.1142/7184Search in Google Scholar

[112] M. Kira and S.W. Koch. Many-body correlations and excitonic effects in semiconductor spectroscopy. Prog. Quantum Electron., 30(5):155 - 296, 2006.10.1016/j.pquantelec.2006.12.002Search in Google Scholar

[113] T. Ando and Y. Uemura. Theory of Quantum Transport in a Two- Dimensional Electron System under Magnetic Fields. I. Characteristics of Level Broadening and Transport under Strong Fields. J. Phys. Soc. Jpn., 36:959-967, 1974.10.1143/JPSJ.36.959Search in Google Scholar

[114] E. Stock, M.-R. Dachner, T. Warming, A. Schliwa, A. Lochmann, A. Hoffmann, A. I. Toropov, A. K. Bakarov, I. A. Derebezov, M. Richter, V. A. Haisler, A. Knorr, and D. Bimberg. Acoustic and optical phonon scattering in a single In(Ga)As quantum dot. Phys. Rev. B, 83:041304, 2011.10.1103/PhysRevB.83.041304Search in Google Scholar

[115] J. Förstner, C. Weber, J. Danckwerts, and A. Knorr. Phononinduced damping of Rabi oscillations in semiconductor quantum dots. Phys. Status Solidi B, 238:419-422, 2003.10.1002/pssb.200303155Search in Google Scholar

[116] N. H. Shon and T. Ando. Quantum Transport in Two- Dimensional Graphite System. J. Phys. Soc. Jpn., 67(7):2421-2429, 1998.10.1143/JPSJ.67.2421Search in Google Scholar

[117] T. Dittrich, P. Haengi, G.-L. Ingold, B. Kramer, G. Schoen, and W. Zwerger. Quantum Transport and Dissipation. Wiley-VCH, 1998.Search in Google Scholar

[118] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys., 4(2):144-148, February 2008.10.1038/nphys781Search in Google Scholar

[119] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and Michael F. Crommie. Origin of spatial charge inhomogeneity in graphene. Nat. Phys., 5(10):722-726, October 2009.10.1038/nphys1365Search in Google Scholar

[120] D.-H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K. v. Klitzing, M. Lippitz, and J. Smet. Excitonic Fano Resonance in Free- Standing Graphene. Nano Lett., 11:1379-1382, 2011.10.1021/nl200040qSearch in Google Scholar PubMed

[121] K. F. Mak, J. Shan, and T. F. Heinz. Seeing Many-Body Effects in Single- and Few-Layer Graphene: Observation of Two-Dimensional Saddle-Point Excitons. Phys. Rev. Lett., 106:046401, 2011.Search in Google Scholar

[122] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz. Measurement of the Optical Conductivity of Graphene. Phys. Rev. Lett., 101:196405, 2008.10.1103/PhysRevLett.101.196405Search in Google Scholar PubMed

[123] M. O. Scully. Quantum Optics. Cambridge University Press, 1997.10.1017/CBO9780511813993Search in Google Scholar

[124] M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejeda, A. Taleb- Ibrahimi, P. Le Fèvre, F. Bertran, S. Vizzini, H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W. A. de Heer, A. Lanzara, and E. H. Conrad. First Direct Observation of a Nearly Ideal Graphene Band Structure. Phys. Rev. Lett., 103:226803, Nov 2009.10.1103/PhysRevLett.103.226803Search in Google Scholar PubMed

[125] D. Sun, C. Divin, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris. Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene. Phys. Rev. Lett., 104:136802, Apr 2010.10.1103/PhysRevLett.104.136802Search in Google Scholar PubMed

[126] F. Wendler, H. Funk, M. Mittendorff, S. Winnerl, M. Helm, A. Knorr, and E. Malic. Eflcient Auger scattering in Landauquantized graphene. Proc. SPIE, 9361:936105-936105-7, 2015.10.1117/12.2075458Search in Google Scholar

[127] W.-P. Li, J.-W. Yin, Y.-F. Yu, and Z.-W. Wang. Two-phonon relaxation processes of the graphene in the magnetic field. Solid State Commun., 163:19 - 22, 2013.10.1016/j.ssc.2013.03.023Search in Google Scholar

[128] S. Fratini and F. Guinea. Substrate-limited electron dynamics in graphene. Phys. Rev. B, 77:195415, May 2008.10.1103/PhysRevB.77.195415Search in Google Scholar

[129] T. Low, V. Perebeinos, R. Kim, M. Freitag, and P. Avouris. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B, 86:045413, Jul 2012.10.1103/PhysRevB.86.045413Search in Google Scholar

[130] F. Guinea, M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys., 6(1):30-33, 2010.10.1038/nphys1420Search in Google Scholar

[131] N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie. Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles. Science, 329(5991):544-547, 2010.10.1126/science.1191700Search in Google Scholar PubMed

[132] R. D. Schaller and V. I. Klimov. High Eflciency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett., 92:186601, 2004.Search in Google Scholar

[133] R. D. Schaller, V. M. Agranovich, and V. I. Klimov. Higheflciency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Phys., 1:189-194, 2005.10.1038/nphys151Search in Google Scholar

[134] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros. Highly Eflcient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots. Nano Lett., 5(5):865-871, 2005. PMID: 15884885. 10.1021/nl0502672Search in Google Scholar PubMed

[135] I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution. Science, 310(5747):462-465, 2005.10.1126/science.1117908Search in Google Scholar PubMed

[136] G. D. Scholes and G. Rumbles. Excitons in nanoscale systems. Nat. Mater., 5(9):683-696, September 2006.10.1038/nmat1710Search in Google Scholar PubMed

[137] R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov. Seven Excitons at a Cost of One: Redefining the Limits for Conversion Eflciency of Photons into Charge Carriers. Nano Lett., 6:424-429, 2006.Search in Google Scholar

[138] G. Nair, L.-Y. Chang, S. M. Geyer, and M. G. Bawendi. Perspective on the Prospects of a Carrier Multiplication Nanocrystal Solar Cell. Nano Lett., 11:2145-2151, 2011.10.1021/nl200798xSearch in Google Scholar PubMed

[139] N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen. Extremely EflcientMultiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes. Science, 325:1367-1371, 2009.10.1126/science.1176112Search in Google Scholar PubMed

[140] R. Baer and E. Rabani. Can Impact Excitation Explain Eflcient Carrier Multiplication in Carbon Nanotube Photodiodes? Nano Lett., 10:3277-3282, 2010.10.1021/nl100639hSearch in Google Scholar PubMed

[141] S. Wang, M. Khafizov, X. Tu, M. Zheng, and T. D. Krauss. Multiple Exciton Generation in Single-Walled Carbon Nanotubes. Nano Lett., 10:2381-2386, 2010.10.1021/nl100343jSearch in Google Scholar PubMed

[142] N. M. Gabor. Impact Excitation and Electron-Hole Multiplication in Graphene and Carbon Nanotubes. Acc. Chem. Res., 46:1348-1357, 2013.10.1021/ar300189jSearch in Google Scholar PubMed

[143] Y. Kanemitsu. Multiple Exciton Generation and Recombination in Carbon Nanotubes and Nanocrystals. Acc. Chem. Res., 46:1358-1366, 2013.10.1021/ar300269zSearch in Google Scholar PubMed

[144] P. T. Landsberg, H. Nussbaumer, and G.Willeke. Band-band impact ionization and solar cell eflciency. J. Appl. Phys., 74:1451-1452, 1993.10.1063/1.354886Search in Google Scholar

[145] W. Shockley and H. J. Queisser. Detailed Balance Limit of Eflciency of p-n Junction Solar Cells. J. Appl. Phys., 32:510-519, 1961.10.1063/1.1736034Search in Google Scholar

[146] H. Aoki. Novel Landau level laser in the quantum Hall regime. Appl. Phys. Lett., 48(9):559-560, 1986.10.1063/1.96506Search in Google Scholar

[147] T. Morimoto, Y. Hatsugai, and H. Aoki. Cyclotron radiation and emission in graphene - a possibility of Landau-level laser. J. Phys. Conf. Ser., 150(2):022059, 2009.10.1088/1742-6596/150/2/022059Search in Google Scholar

[148] I. Gierz. Graphene optoelectronics: A fool’s errand. Nature Phys., 11:12-13, 2015. Search in Google Scholar

Received: 2015-6-15
Accepted: 2015-6-22
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.3.2023 from
Scroll Up Arrow