Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

Template-Guided Self-Assembly of Discrete Optoplasmonic Molecules and Extended Optoplasmonic Arrays

  • Björn M. Reinhard EMAIL logo , Wonmi Ahn , Yan Hong , Svetlana V. Boriskina and Xin Zhao
From the journal Nanophotonics


The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic and dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs) serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles.We characterize the fundamental electromagnetic working principles underlying both optoplasmonic approaches and review the fabrication strategies implemented to realize them.


[1] Muhlschlegel P., Eisler H.J., Martin O.J.F., Hecht B., Pohl D.W., Resonant optical antennas, Science 2005, 308, 1607 - 09.10.1126/science.1111886Search in Google Scholar PubMed

[2] Novotny L., Effective wavelength scaling for optical antennas, Phys Rev Lett 2007, 98, 266802.10.1103/PhysRevLett.98.266802Search in Google Scholar PubMed

[3] Novotny L., van Hulst N., Antennas for light, Nature Photon 2011, 5, 83 - 90.10.1038/nphoton.2010.237Search in Google Scholar

[4] Halas N.J., Lal S., Chang W.S., Link S., Nordlander P., Plasmons in strongly coupled metallic nanostructures, Chemical Reviews 2011, 111, 3913 - 61.10.1021/cr200061kSearch in Google Scholar PubMed

[5] Bharadwaj P., Deutsch B., Novotny L., Optical antennas, Adv Opt Photon 2009, 1, 438 - 83.10.1364/AOP.1.000438Search in Google Scholar

[6] Li J.J., Salandrino A., Engheta N., Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain, Phys Rev B 2007, 76, 245403.10.1103/PhysRevB.76.245403Search in Google Scholar

[7] Muskens O.L., Giannini V., Sanchez-Gil J.A., Rivas J.G., Optical scattering resonances of single and coupled dimer plasmonic nanoantennas, Optics Express 2007, 15, 17736 - 46.10.1364/OE.15.017736Search in Google Scholar

[8] Schuller J.A., Barnard E.S., Cai W., Jun Y.C., White J.S., Brongersma M.L., Plasmonics for extreme light concentration and manipulation, Nat Mater 2010, 9, 193 - 204.10.1038/nmat2630Search in Google Scholar PubMed

[9] Muskens O.L., Giannini V., Sanchez-Gil J.A., Gomez Rivas J., Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas, Nano Lett 2007, 7, 2871-75.10.1021/nl0715847Search in Google Scholar PubMed

[10] Zhang J., Fu Y., Chowdhury M.H., Lakowicz J.R., Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: Coupling effect between metal particles, Nano Lett 2007, 7, 2101 - 07.10.1021/nl071084dSearch in Google Scholar PubMed PubMed Central

[11] Li K.R., Stockman M.I., Bergman D.J., Self-similar chain of metal nanospheres as an eflcient nanolens, Phys Rev Lett 2003, 91, 227402.10.1103/PhysRevLett.91.227402Search in Google Scholar PubMed

[12] Camden J.P., Dieringer J.A., Wang Y., et al., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots, J Am Chem Soc 2008, 130, 12616 - 17.10.1021/ja8051427Search in Google Scholar PubMed

[13] Giannini V., Fernandez-Dominguez A.I., Heck S.C., Maier S.A., Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chem Rev 2011, 111, 3888 - 912.10.1021/cr1002672Search in Google Scholar PubMed

[14] Farahani J.N., Pohl D.W., Eisler H.J. and Hecht B., Single quantum dot coupled to a scanning optical antenna: A tunable superemitter, Phys Rev Lett 2005, 95, 017402.10.1103/PhysRevLett.95.017402Search in Google Scholar PubMed

[15] Link S., El-Sayed M.A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J Phys Chem B 1999, 103, 8410 -26.10.1021/jp9917648Search in Google Scholar

[16] Fan J.A., Wu C., Bao K., et al., Self-assembled plasmonic nanoparticle clusters, Science 2010, 328, 1135 - 38.10.1126/science.1187949Search in Google Scholar PubMed

[17] Noginov M.A., Zhu G., Belgrave A.M., et al., Demonstration of spaser-based nanolaser, Nature 2009, 460, 1110 - 12.10.1038/nature08318Search in Google Scholar PubMed

[18] Zou S.L., Schatz G.C., Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays, J Chem Phys 2004, 121, 12606 - 12.10.1063/1.1826036Search in Google Scholar PubMed

[19] Brunazzo D., Descrovi E., Olivier J.M., Narrowband optical interactions in a plasmonic nanoparticle chain coupled to a metallic film, Optics Letters 2009, 34, 1405 - 07.10.1364/OL.34.001405Search in Google Scholar PubMed

[20] Benson O., Assembly of hybrid photonic architectures from nanophotonic constituents, Nature 2011, 480, 193 - 99.10.1038/nature10610Search in Google Scholar PubMed

[21] Ahn W., Boriskina S.V., Hong Y., Reinhard B.M., Photonicplasmonic mode coupling in on-chip integrated optoplasmonic molecules, ACS Nano 2012, 6, 951 - 60.10.1021/nn204577vSearch in Google Scholar PubMed

[22] Ahn W., Hong Y., Boriskina S.V., Reinhard B.M., Demonstration of eflcient on-chip photon transfer in self-assembled optoplasmonic networks, ACS Nano 2013, 7, 4470 - 78.10.1021/nn401062bSearch in Google Scholar PubMed

[23] Hong Y., Pourmand M., Boriskina S.V., Reinhard B.M., Enhanced light focusing in self-assembled optoplasmonic clusters with subwavelength dimensions, Adv Mater 2013, 25, 115 - 19.10.1002/adma.201202830Search in Google Scholar PubMed

[24] Hong Y., Qiu Y., Chen T., Reinhard B.M., Rational assembly of optoplasmonic hetero-nanoparticle arrays with tunable photonicplasmonic resonances, Adv Funct Mater 2014, 24, 739 - 46.10.1002/adfm.201301837Search in Google Scholar PubMed PubMed Central

[25] Mukherjee I., Hajisalem G., Gordon R.E., One-step integration of metal nanoparticle in photonic crystal nanobeam cavity, Optics Express 2011, 19, 22462 - 69.10.1364/OE.19.022462Search in Google Scholar PubMed

[26] Vecchi G., Giannini V., Gomez Rivas J., Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas, Phys Rev Lett 2009, 102, 146807.10.1103/PhysRevLett.102.146807Search in Google Scholar PubMed

[27] Vecchi G., Giannini V., Gomez Rivas J., Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas, Phys Rev B 2009, 80, 201401. 10.1103/PhysRevB.80.201401Search in Google Scholar

[28] Vakevainen A.I., Moerland R.J., Rekola H.T., et al., Plasmonic surface lattice resonances at the strong coupling regime, Nano Lett 2013, 14, 1721 - 27.10.1021/nl4035219Search in Google Scholar PubMed

[29] Auguié B. and Barnes W.L., Collective resonances in gold nanoparticle arrays, Phys Rev Lett 2008, 101, 143902.10.1103/PhysRevLett.101.143902Search in Google Scholar PubMed

[30] Markel V.A., Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in onedimensional periodic arrays of nanospheres, J Phys B: At Mol Opt Phys 2005, 38, 115 - 21.10.1088/0953-4075/38/7/L02Search in Google Scholar

[31] Zou S., Schatz G.C., Response to “comment on ‘silver nanoparticle array structures that produce remarkable narrow plasmon line shapes”’[J. Chem. Phys. 120, 10871 (2004)], J Chem Phys 2005, 122, 097102.10.1063/1.1859282Search in Google Scholar

[32] Markel V.A., Comment on “silver nanoparticle array structures that produce remarkably narrow plasmon line shapes”[J. Chem. Phys. 120, 10871 (2004)], J Chem Phys 2005, 122, 097101.10.1063/1.1859281Search in Google Scholar PubMed

[33] Zou S., Schatz G.C., Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced raman scattering applications, Isr J Chem 2006, 46, 293 - 97.10.1560/IJC_46_3_293Search in Google Scholar

[34] Hong Y., Ahn W., Boriskina S.V., Zhao X., Reinhard B.M., Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties, J Phys Chem Lett 2015, 6, 2056 - 64.10.1021/acs.jpclett.5b00366Search in Google Scholar PubMed

[35] Barth M., Schietinger S., Fischer S., et al., Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling, Nano Lett 2010, 10, 891 - 95.10.1021/nl903555uSearch in Google Scholar PubMed

[36] Devilez A., Stout B., Bonod N., Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission, ACS nano 2010, 4, 3390 - 96.10.1021/nn100348dSearch in Google Scholar PubMed

[37] Vernooy D.W., Furusawa A., Georgiadis N.P., Ilchenko V.S., Kimble H.J., Cavity QED with high-Q whispering gallery modes, Phys Rev A 1998, 57, R2293.10.1103/PhysRevA.57.R2293Search in Google Scholar

[38] AhnW., Boriskina S.V., Hong Y., Reinhard B.M., Electromagnetic field enhancement and spectrumshaping in plasmonically integrated optical vortices, Nano Lett 2012, 12, 219 - 27.10.1021/nl203365ySearch in Google Scholar PubMed PubMed Central

[39] Frimmer M., Koenderink A.F., Superemitters in hybrid photonic systems: A simple lumping rule for the local density of optical states and its breakdown at the unitary limit, Phys Rev B 2012, 86, 235428.10.1103/PhysRevB.86.235428Search in Google Scholar

[40] Frimmer M., Koenderink A.F., Spontaneous emission control in a tunable hybrid photonic system, Phys Rev Lett 2013, 110, 217405.10.1103/PhysRevLett.110.217405Search in Google Scholar PubMed

[41] Yan B., Boriskina S.V., Reinhard B.M., Optimizing gold nanoparticle cluster configurations (n = 7) for array applications, J Phys Chem C 2011, 115, 4578 - 83.10.1021/jp112146dSearch in Google Scholar PubMed PubMed Central

[42] Yan B., Thubagere A., Premasiri R., Ziegler L., Dal Negro L., Reinhard B.M., Engineered SERS substrates with multiscale signal enhancement: Nanoparticle cluster arrays, ACS Nano 2009, 3, 1190 - 202.10.1021/nn800836fSearch in Google Scholar PubMed

[43] Li Z., Butun S., Aydin K., Touching gold nanoparticle chain based plasmonic antenna arrays and optical metamaterials, ACS Photonics 2014, 1, 228 - 34.10.1021/ph4000828Search in Google Scholar

[44] Johnson P.B., Christy R.W., Optical constants of the noble metals, Phys Rev B 1972, 6, 4370.10.1103/PhysRevB.6.4370Search in Google Scholar

[45] König M., Rahmani M., Zhang L., et al., Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers, ACS nano 2014, 8, 9188 - 98. 10.1021/nn5028714Search in Google Scholar PubMed

[46] Yan B., Boriskina S.V., Reinhard B.M., Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing, J Phys Chem C 2011, 115, 24437 - 53.10.1021/jp207821tSearch in Google Scholar PubMed PubMed Central

[47] Yang L., Yan B., Premasiri R.W., Ziegler L.D., Dal Negro L., Reinhard B.M., Engineering nanoparticle cluster arrays for bacterial biosensing: The role of the building block in multiscale sers substrates, Adv Funct Mater 2010, 20, 2619 - 28.10.1002/adfm.201000630Search in Google Scholar

[48] Arnold S. Microspheres, Photonic atoms and the physics of nothing, American Scientist 2001, 89, 414.10.1511/2001.34.754Search in Google Scholar

[49] Shopova S., Blackledge C., Rosenberger A., Enhanced evanescent coupling to whispering-gallery modes due to gold nanorods grown on the microresonator surface, Appl Phys B: Laser Opt 2008, 93, 183 - 87.10.1007/s00340-008-3180-6Search in Google Scholar

[50] Melnikau D., Savateeva D., Chuvilin A., Hillenbrand R., Rakovich Y.P., Whispering gallery mode resonatorswith J-aggregates, Optics Express 2011, 19, 22280.10.1364/OE.19.022280Search in Google Scholar PubMed

[51] Santiago-Cordoba M.A., Boriskina S.V., Vollmer F., Demirel M.C., Nanoparticle-based protein detection by optical shift of a resonant microcavity, Appl Phys Lett 2011, 99, 073701.10.1063/1.3599706Search in Google Scholar

[52] Baaske M.D., Foreman M.R., Vollmer F., Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform, Nat Nanotechnol 2014, 9, 933 - 39.10.1038/nnano.2014.180Search in Google Scholar PubMed

[53] Gartia M.R., Seo S., Kim J., et al., Injection-seeded optoplasmonic amplifier in the visible, Scientific reports 2014, 4, 6168. 10.1038/srep06168Search in Google Scholar PubMed PubMed Central

[54] Kanaev A.V., Astratov V.N., CaiW., Optical coupling at a distance between detuned spherical cavities, Appl Phys Lett 2006, 88, 111111.10.1063/1.2186075Search in Google Scholar

[55] Xia Y.N., Yin Y.D., Lu Y., McLellan J., Template-assisted selfassembly of spherical colloids into complex and controllable structures, Adv Funct Mater 2003, 13, 907 - 18.10.1002/adfm.200300002Search in Google Scholar

[56] Mitsui T.,Wakayama Y., Onodera T., Takaya Y., Oikawa H., Observation of light propagation across 90∘ corner in chains of microspheres on a patterned substrate, Optics Letters 2008, 33, 1189 - 91.10.1364/OL.33.001189Search in Google Scholar PubMed

[57] de Abajo F.J.G., Colloquium: Light scattering by particle and hole arrays, Rev Mod Phys 2007, 79, 1267 - 90.10.1103/RevModPhys.79.1267Search in Google Scholar

[58] Chen T., Pourmand M., Feizpour A., Cushman B., Reinhard B.M., Tailoring plasmon coupling in self-assembled one-dimensional au nanoparticle chains through simultaneous control of size and gap separation, J Phys Chem Lett 2013, 4, 2147 - 52.10.1021/jz401066gSearch in Google Scholar PubMed PubMed Central

[59] Mackowski D.W., Mishchenko M.I., Calculation of the T matrix and the scattering matrix for ensembles of spheres, J Opt Soc Am A 1996, 13, 2266 - 78.10.1364/JOSAA.13.002266Search in Google Scholar

[60] Le Ru E.C., Etchegoin P.G., Rigorous justification of the |E|4 enhancement factor in surface enhanced raman spectroscopy, Chemical Physics Letters 2006, 423, 63 - 66. 10.1016/j.cplett.2006.03.042Search in Google Scholar

Received: 2015-6-9
Accepted: 2015-7-18
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 6.6.2023 from
Scroll to top button