Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter November 6, 2015

Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

  • S. Gross EMAIL logo and M. J. Withford
From the journal Nanophotonics


Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.


[1] Richardson D.J., Fini J.M., Nelson L.E., Space-division multiplexing in optical fibres, Nat Photonics 2013; 7:354-62.Search in Google Scholar

[2] Davis K.M., Miura K., Sugimoto N., Hirao K.,Writing waveguides in glass with a femtosecond laser, Opt Lett 1996; 21:1729-31.Search in Google Scholar

[3] Glezer E.N., Milosavljevic M., Huang L., Finlay R.J., Her T.-H., Callan J.P., et al., Three-dimensional optical storage inside transparent materials, Opt Lett 1996; 21:2023.Search in Google Scholar

[4] Kowalevicz A.M., Sharma V., Ippen E.P., Fujimoto J.G., Minoshima K., Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator, Opt Lett 2005; 30:1060-2.Search in Google Scholar

[5] Pertsch T., Peschel U., Lederer F., Burghoff J., Will M., Nolte S., et al., Discrete diffraction in two-dimensional arrays of coupled waveguides in silica, Opt Lett 2004; 29:468-70.Search in Google Scholar

[6] Thomson R.R., Birks T.A., Leon-Saval S.G., Kar A.K., Bland- Hawthorn J., Ultrafast laser inscription of an integrated photonic lantern, Opt Express 2011; 19:5698-705.Search in Google Scholar

[7] Guan B., Scott R., Qin C., Fontaine N., Free-space coherent optical communication with orbital angular, momentum multiplexing/ demultiplexing using a hybrid 3D photonic integrated circuit, Opt Express 2014; 22:145-56.Search in Google Scholar

[8] Owens J.O., Broome M. A., Biggerstaff D.N., Goggin M.E., Fedrizzi A., Linjordet T., et al., Two-photon quantum walks in an elliptical direct-write waveguide array, New J Phys 2011; 13:075003.Search in Google Scholar

[9] Crespi A., Ramponi R., Osellame R., Sansoni L., Bongioanni I., Sciarrino F., et al., Integrated photonic quantumgates for polarization qubits, Nat Commun 2011; 2:566.Search in Google Scholar

[10] Jovanovic N., Tuthill P.G., Norris B., Gross S., Stewart P., Charles N., et al., Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging, Mon Not R Astron Soc 2012; 427:806-15.Search in Google Scholar

[11] Gross S., Riesen N., Love J.D., Withford M.J., Three-dimensional ultra-broadband integrated tapered mode multiplexers, Laser Photon Rev 2014; 8:L81-5.10.1002/lpor.201400078Search in Google Scholar

[12] Itoh K., Watanabe W., Nolte S., Schaffer C.B., Ultrafast Processes for Bulk Modification of TransparentMaterials, MRS Bull 2006; 31:620-5.Search in Google Scholar

[13] Gross S., Dubov M., Withford M.J., On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics, Opt Express 2015; 23:7767-70.Search in Google Scholar

[14] Beresna M., Gecevičius M., Kazansky P.G., Ultrafast laser direct writing and nanostructuring in transparent materials, Adv Opt Photonics 2014; 6:293.Search in Google Scholar

[15] Kazansky P.G., Inouye H., Mitsuyu T., Miura K., Qiu J., Hirao K., et al., Anomalous Anisotropic Light Scattering in Ge-Doped Silica Glass, Phys Rev Lett 1999; 82:2199.Search in Google Scholar

[16] Shimotsuma Y., Kazansky P., Qiu J., Hirao K., Self- Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses, Phys Rev Lett 2003; 91:1-4.Search in Google Scholar

[17] Richter S., Miese C.T., Döring S., Zimmermann F., Withford M.J., Tünnermann A., et al., Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULETM, Opt Mater Express 2013; 3:1161.Search in Google Scholar

[18] Qiu J., Kazansky P.G., Si J., Miura K., Mitsuyu T., Hirao K., et al., Memorized polarization-dependent light scattering in rareearth- ion-doped glass, Appl Phys Lett 2000; 77:1940.Search in Google Scholar

[19] Shimotsuma Y., Hirao K., Qiu J., Miura K., Nanofabrication in transparent materials with a femtosecond pulse laser, J Non Cryst Solids 2006; 352:646-56.Search in Google Scholar

[20] Wortmann D., Gottmann J., Brandt N., Horn-Solle H., Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching, Opt Express 2008; 16:1517.Search in Google Scholar

[21] Glezer E.N.,Mazur E., Ultrafast-laser driven micro-explosions in transparent materials, Appl Phys Lett 1997; 71:882.Search in Google Scholar

[22] Streltsov A.M., Borrelli N.F., Study of femtosecond-laser-written waveguides in glasses, J Opt Soc Am B 2002; 19:2496.Search in Google Scholar

[23] Chan J.W., Huser T.R., Risbud S.H., Hayden J.S., Krol D.M., Waveguide fabrication in phosphate glasses using femtosecond laser pulses, Appl Phys Lett 2003; 82:2371.Search in Google Scholar

[24] Siegel J., Fernández-Navarro J.M., García-Navarro A., Diez- Blanco V., Sanz O., Solis J., et al., Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold, Appl Phys Lett 2005; 86:121109.Search in Google Scholar

[25] Efimov O.M., Glebov L.B., Richardson K. A., Van Stryland E., Cardinal T., Park S.H., et al., Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses, OptMater (Amst) 2001; 17:379-86.Search in Google Scholar

[26] Gross S., Ams M., Palmer G., Miese C.T., Williams R.J., Marshall G.D., et al., Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics, Int J Appl Glas Sci 2012; 3:332-48.Search in Google Scholar

[27] Lancaster D.G., Gross S., Ebendorff-Heidepriem H., Kuan K., Monro T.M., Ams M., et al., Fifty percent internal slope eflciency femtosecond direct-written Tm3+:ZBLAN waveguide laser, Opt Lett 2011; 36:1587-9.Search in Google Scholar

[28] Chen F., de Aldana J.R.V., Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining, Laser Photon Rev 2014; 8:251-75.Search in Google Scholar

[29] Burghoff J., Grebing C., Nolte S., Tünnermann A., Eflcient frequency doubling in femtosecond laser-written waveguides in lithium niobate, Appl Phys Lett 2006; 89:081108.Search in Google Scholar

[30] Okhrimchuk A.G., Shestakov A.V., Khrushchev I., Mitchell J., Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing, Opt Lett 2005; 30:2248-50.Search in Google Scholar

[31] Kawamura K., Hirano M., Kurobori T., Takamizu D., Kamiya T., Hosono H., Femtosecond-laser-encoded distributed-feedback color center laser in lithium fluoride single crystals, Appl Phys Lett 2004; 84:311.Search in Google Scholar

[32] Gui L., Xu B., Chong T.C., Microstructure in Lithium Niobate by Use of Focused Femtosecond Laser Pulses, IEEE Photonics Technol Lett 2004; 16:1337-9.Search in Google Scholar

[33] Jaque D., Psaila N.D., Thomson R.R., Chen F., Maestro L.M., Ródenas A., et al., Ultrafast laser inscription of bistable and reversible waveguides in strontium barium niobate crystals, Appl Phys Lett 2010; 96:191104.Search in Google Scholar

[34] McMillen B., Chen K.P., An H., Fleming S., Hartwell V., Snoke D., Waveguiding and nonlinear optical properties of threedimensional waveguides in LiTaO3 written by high-repetition rate ultrafast laser, Appl Phys Lett 2008; 93:111106.Search in Google Scholar

[35] Ródenas A., Benayas A., Macdonald J.R., Zhang J., Tang D.Y., Jaque D., et al., Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG, Opt Lett 2011; 36:3395-7.Search in Google Scholar

[36] Rodenas A., Kar A.K., High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing, Opt Express 2011; 19:17820.Search in Google Scholar

[37] He R., Hernández-Palmero I., Romero C., Vázquez de Aldana J.R., Chen F., Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing, Opt Express 2014; 22:31293.Search in Google Scholar

[38] Miese C., Gross S., Withford M.J., Fuerbach A., Waveguide inscription in Bismuth Germanate crystals using high repetition rate femtosecond lasers pulses, OptMater Express 2015; 5:323.Search in Google Scholar

[39] Zoubir A., Lopez C., Richardson M., Richardson K., Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate), Opt Lett 2004; 29:1840.Search in Google Scholar

[40] Sowa S., Watanabe W., Tamaki T., Nishii J., Itoh K., Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses, Opt Express 2006; 14:291. Search in Google Scholar

[41] Gattass R.R., Cerami L.R., Mazur E., Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates, Opt Express 2006; 14:5279-84.Search in Google Scholar

[42] Eaton S.M., Zhang H., Ng M.L., Li J., ChenW.-J., Ho S., et al., Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides, Opt Express 2008; 16:9443-58.Search in Google Scholar

[43] Schaffer C.B., García J.F., Mazur E., Bulk heating of transparent materials using a high-repetition-rate femtosecond laser, Appl Phys A Mater Sci Process 2003; 76:351-4.Search in Google Scholar

[44] Eaton S.M., Zhang H., Herman P.R., Yoshino F., Shah L., Bovatsek J., et al., Heat accumulation effects in femtosecond laserwritten waveguides with variable repetition rate, Opt Express 2005; 13:4708-16.Search in Google Scholar

[45] Little D.J., Ams M., Gross S., Dekker P., Miese C.T., Fuerbach A., et al., Structural changes in BK7 glass upon exposure to femtosecond laser pulses, J Raman Spectrosc 2011; 42:715-8.Search in Google Scholar

[46] Little D.J., Ams M., Dekker P., Marshall G.D., Withford M.J., Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime, J Appl Phys 2010; 108:033110.Search in Google Scholar

[47] Fletcher L.B., Witcher J.J., Reichman W.B., Arai A., Bovatsek J., Krol D.M., Changes to the network structure of Er-Yb doped phosphate glass induced by femtosecond laser pulses, J Appl Phys 2009; 106:083107.Search in Google Scholar

[48] Toney Fernandez T., Haro-González P., Sotillo B., Hernandez M., Jaque D., Fernandez P., et al., Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass, Opt Lett 2013; 38:5248.Search in Google Scholar

[49] Shimizu M., Sakakura M., Kanehira S., Nishi M., Shimotsuma Y., Hirao K., et al., Formation mechanism of element distribution in glass under femtosecond laser irradiation, Opt Lett 2011; 36:2161-3.Search in Google Scholar

[50] Sakakura M., Kurita T., Shimizu M., Yoshimura K., Shimotsuma Y., Fukuda N., et al., Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots, Opt Lett 2013; 38:4939.Search in Google Scholar

[51] Hoyo J., Berdejo V., Toney Fernandez T., Ferrer A., Ruiz A., Valles J.A., et al., Femtosecond laser written 16.5 mm long glasswaveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm, Laser Phys Lett 2013; 10:105802.Search in Google Scholar

[52] Fletcher L.B.,Witcher J.J., Troy N., Reis S.T., BrowR.K., Krol D.M., Direct femtosecond laser waveguide writing inside zinc phosphate glass, Opt Express 2011; 19:7929-36.Search in Google Scholar

[53] Gross S., Lancaster D.G., EBendorff-Heidepriem H., Monro T.M., Fuerbach A., Withford M.J., Femtosecond laser induced structural changes in fluorozirconate glass, OptMater Express 2013; 3:574-83.Search in Google Scholar

[54] Miura K., Qiu J., Inouye H., Mitsuyu T., Hirao K., Photowritten optical waveguides in various glasses with ultrashort pulse laser, Appl Phys Lett 1997; 71:3329.Search in Google Scholar

[55] Bérubé J.-P., Bernier M., Vallée R., Femtosecond laser-induced refractive index modifications in fluoride glass, Opt Mater Express 2013; 3:598.Search in Google Scholar

[56] Ams M., Marshall G.D., Dekker P., Dubov M., Mezentsev V.K., Bennion I., et al., Investigation of Ultrafast Laser-Photonic Material Interactions: Challenges for Directly Written Glass Photonics, IEEE J Sel Top Quantum Electron 2008; 14:1370-81.Search in Google Scholar

[57] Fukuda T., Ishikawa S., Fujii T., Sakuma K., Hosoya H., Lowloss optical waveguides written by femtosecond laser pulses for three-dimensional photonic devices, Proc SPIE 2004; 5339:524-38.Search in Google Scholar

[58] Nasu Y., Kohtoku M., Hibino Y., Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit, Opt Lett 2005; 30:723-5.Search in Google Scholar

[59] Meany T., Gross S., Jovanovic N., Arriola A., Steel M.J., Withford M.J., Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm, Appl Phys A 2014; 114:113-8.Search in Google Scholar

[60] Nolte S., Will M., Burghoff J., Tünnermann A., Ultrafast laser processing: New options for three-dimensional photonic structures, J Mod Opt 2004; 51:2533-42.Search in Google Scholar

[61] Little D.J., Ams M., Dekker P., Marshall G.D., Dawes J.M., Withford M.J., Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure, Opt Express 2008; 16:20029-37.Search in Google Scholar

[62] Osellame R., Chiodo N., Della Valle G., Cerullo G., Ramponi R., Laporta P., et al., Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator, IEEE J Sel Top Quantum Electron 2006; 12:277-85.Search in Google Scholar

[63] Eaton S.M., Ng M.L., Osellame R., Herman P.R., High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser, J Non Cryst Solids 2011; 357:2387-91.Search in Google Scholar

[64] Palmer G., Gross S., Fuerbach A., Lancaster D.G., Withford M.J., High slope eflciency and high refractive index change in directwritten Yb-doped waveguide lasers with depressed claddings, Opt Express 2013; 21:17413.Search in Google Scholar

[65] Low D.K.Y., Xie H., Xiong Z., Lim G.C., Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass, Appl Phys A 2005; 81:1633-8.Search in Google Scholar

[66] Miura K., Qiu J., Mitsuyu T., Hirao K., Preparation and optical properties of fluoride glass waveguides induced by laser pulses, J Non Cryst Solids 1999; 256-257:212-9.10.1016/S0022-3093(99)00459-7Search in Google Scholar

[67] Arriola A., Gross S., Jovanovic N., Charles N., Tuthill P.G., Olaizola S.M., et al., Low bend loss waveguides enable compact, eflcient 3D photonic chips, Opt Express 2013; 21:2978-86.Search in Google Scholar

[68] Cerullo G., Osellame R., Taccheo S., Marangoni M., Polli D., Ramponi R., et al., Femtosecond micromachining of symmetric waveguides at 1.5 micron by astigmatic beam focusing, Opt Lett 2002; 27:1938-40.Search in Google Scholar

[69] Osellame R., Taccheo S., Marangoni M., Ramponi R., Laporta P., Polli D., et al., Femtosecond writing of active optical waveguides with astigmatically shaped beams, J Opt Soc Am B 2003; 20:1559.Search in Google Scholar

[70] Ams M., Marshall G.D., Spence D., Withford M.J., Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses, Opt Express 2005; 13:5676-81.Search in Google Scholar

[71] Salter P.S., Jesacher A., Spring J.B., Metcalf B.J., Thomas-Peter N., Simmonds R.D., et al., Adaptive slit beam shaping for direct laser written waveguides, Opt Lett 2012; 37:470-2.Search in Google Scholar

[72] Cumming B.P., Debbarma S., Luther-davis B., Gu M., Simultaneous compensation for aberration and axial elongation in threedimensional laser nanofabrication by a high numerical-aperture objective, Opt Express 2013; 21:19135-41.Search in Google Scholar

[73] Thomson R.R., Bockelt A.S., Ramsay E., Beecher S.J., Greenaway A.H., Kar A.K., et al., Shaping ultrafast laser inscribed optical waveguides using a deformable mirror, Opt Express 2008; 16:12786-93. Search in Google Scholar

[74] Thomson R.R., Bookey H.T., Psaila N.D., Campbell S., Reid D.T., Jha A., et al., Internal gain from an erbium-doped oxyfluoridesilicate glass waveguide fabricated using femtosecond waveguide inscription, IEEE Photonics Technol Lett 2006; 18:1515-7.Search in Google Scholar

[75] Zhu G., van Howe J., Durst M., Zipfel W., Xu C., Simultaneous spatial and temporal focusing of femtosecond pulses, Opt Express 2005; 13:2153.Search in Google Scholar

[76] He F., Xu H., Cheng Y., Ni J., Xiong H., Xu Z., et al., Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses, Opt Lett 2010; 35:1106.Search in Google Scholar

[77] Durfee C.G., Greco M., Block E., Vitek D., Squier J.A., Intuitive analysis of space-time focusing with double-ABCD calculation, Opt Express 2012; 20:14244.Search in Google Scholar

[78] He F., Cheng Y., Lin J., Ni J., Xu Z., Sugioka K., et al., Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining, New J Phys 2011; 13:083014.Search in Google Scholar

[79] Vitek D.N., Block E., Bellouard Y., Adams D.E., Backus S., Kleinfeld D., et al., Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparentmaterials, Opt Express 2010; 18:24673.Search in Google Scholar

[80] Török P., Varga P., Booker G.R., Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field, I. J Opt Soc Am A 1995; 12:2136.10.1364/JOSAA.12.002136Search in Google Scholar

[81] Marcinkevičius A., Mizeikis V., Juodkazis S., Matsuo S., Misawa H., Effect of refractive index-mismatch on laser microfabrication in silica glass, Appl Phys AMater Sci Process 2003; 76:257-60.Search in Google Scholar

[82] Hnatovsky C., Taylor R.S., Simova E., Bhardwaj V.R., Rayner D.M., CorkumP.B., High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beamin the presence of aberrations, J Appl Phys 2005; 98:013517.Search in Google Scholar

[83] Ferrer A., Diez-Blanco V., Ruiz A., Siegel J., Solis J., Deep subsurface opticalwaveguides produced by direct writingwith femtosecond laser pulses in fused silica and phosphate glass, Appl Surf Sci 2007; 254:1121-5.Search in Google Scholar

[84] Ho S., Haque M., Herman P.R., Aitchison J.S., Femtosecond laser-assisted etching of three-dimensional inverted-woodpile structures in fused silica, Opt Lett 2012; 37:1682.Search in Google Scholar

[85] D’Amico C., Cheng G., Mauclair C., Troles J., Calvez L., Nazabal V., et al., Large-mode-area infrared guiding in ultrafast laser written waveguides in Sulfur-based chalcogenide glasses, Opt Express 2014; 22:13091-101.Search in Google Scholar

[86] Mauclair C., Mermillod-Blondin A., Huot N., Audouard E., Stoian R., Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction, Opt Express 2008; 16:5481.Search in Google Scholar

[87] Jesacher A., Marshall G.D., Wilson T., Booth M.J., Adaptive optics for direct laser writing with plasma emission aberration sensing, Opt Express 2010; 18:656-61.Search in Google Scholar

[88] Cumming B.P., Jesacher A., Booth M.J., Wilson T., Gu M., Adaptive aberration compensation for three-dimensional microfabrication of photonic crystals in lithium niobate, Opt Express 2011; 19:9419-25.Search in Google Scholar

[89] Cumming B.P., Turner M.D., Schröder-Turk G.E., Debbarma S., Luther-Davies B., Gu M., Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass, Opt Express 2014; 22:689.Search in Google Scholar

[90] Salter P.S., Iqbal Z., Booth M.J., Analysis of the Three- Dimensional Focal Positioning Capability of Adaptive Optic Elements, Int J Optomechatronics 2013; 7:1-14.Search in Google Scholar

[91] Salter P.S., BaumM., Alexeev I., Schmidt M., Booth M.J., Exploring the depth range for three-dimensional lasermachining with aberration correction, Opt Express 2014; 22:17644.Search in Google Scholar

[92] Jesacher A., Booth M.J., Parallel direct laser writing in three dimensions with spatially dependent aberration correction, Opt Express 2010; 18:21090.Search in Google Scholar

[93] Yamaji M., Kawashima H., Suzuki J., Tanaka S., Shimizu M., Hirao K., et al., Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram, J Appl Phys 2012; 111:083107.Search in Google Scholar

[94] Sakakura M., Sawano T., Shimotsuma Y., Miura K., Hirao K., Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator, Jpn J Appl Phys 2009; 48:126507.Search in Google Scholar

[95] Sakakura M., Sawano T., Shimotsuma Y., Miura K., Hirao K., Fabrication of three-dimensional 1 × 4 splitter waveguides inside a glass substratewith spatially phase modulated laser beam, Opt Express 2010; 18:12136.Search in Google Scholar

[96] Pospiech M., Emons M., Väckenstedt B., Palmer G., Morgner U., Single-sweep laser writing of 3D-waveguide devices, Opt Express 2010; 18:6994-7001.Search in Google Scholar

[97] Mauclair C., Cheng G., Huot N., Audouard E., Rosenfeld A., Hertel I.V., et al., Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials, Opt Express 2009;17:3531.Search in Google Scholar

[98] Salter P.S., Booth M.J., Dynamic optical methods for direct laser writtenwaveguides, In: von Freymann G., SchoenfeldW.V., Rumpf R.C., eds. Proc. SPIE, vol. 8613; 2013:86130A.10.1117/12.2005054Search in Google Scholar

[99] Diezblanco V., Siegel J., Solis J.,Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold, Appl Surf Sci 2006; 252:4523-6.Search in Google Scholar

[100] Macdonald J.R., Thomson R.R., Beecher S.J., Psaila N.D., Bookey H.T., Kar A.K., Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe, Opt Lett 2010; 35:4036.Search in Google Scholar

[101] McMillen B., Zhang B., Chen K.P., Benayas A., Jaque D., Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 065 dB/cm loss, Opt Lett 2012; 37:1418.Search in Google Scholar

[102] Boyd R.W., Nonlinear Optics, 3rd ed., Academic Press; 2008.Search in Google Scholar

[103] Fibich G., Ilan B., Self-focusing of elliptic beams: an example of the failure of the aberrationless approximation, J Opt Soc Am B 2000; 17:1749.Search in Google Scholar

[104] Schaffer C.B., Brodeur A.,García J.F.,Mazur E., Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt Lett 2001; 26:93-5.Search in Google Scholar

[105] Gaeta A., Catastrophic Collapse of Ultrashort Pulses, Phys Rev Lett 2000; 84:3582-5.10.1103/PhysRevLett.84.3582Search in Google Scholar PubMed

[106] Nguyen N.T., Saliminia A., Liu W., Chin S.L., Vallée R., Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses, Opt Lett 2003; 28:1591-3.Search in Google Scholar

[107] Yamada K., Watanabe W., Toma T., Itoh K., Nishii J., In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses, Opt Lett 2001; 26:19-21.Search in Google Scholar

[108] Schaffer C.B., Brodeur A., Mazur E., Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas Sci Technol 2001; 12:1784-94. Search in Google Scholar

[109] Nejadmalayeri A.H., Herman P.R., Ultrafast laser waveguide writing: Lithiumniobate and the role of circular polarization and picosecond pulse width, Opt Lett 2006; 31:2987-9.Search in Google Scholar

[110] Mermillod-Blondin A., Mauclair C., Rosenfeld A., Bonse J., Hertel I.V., Audouard E., et al., Size correction in ultrafast laser processing of fused silica by temporal pulse shaping, Appl Phys Lett 2008; 93:021921.Search in Google Scholar

[111] Simmonds R.D., Salter P.S., Jesacher A., Booth M.J., Three dimensional laser microfabrication in diamond using a dual adaptive optics system, Opt Express 2011; 19:24122-8.Search in Google Scholar

[112] Bland-Hawthorn J., Kern P., Astrophotonics: a new era for astronomical instruments, Opt Express 2009; 17:1880.Search in Google Scholar

[113] Thomson R.R., Kar A.K., Allington-Smith J., Ultrafast laser inscription: an enabling technology for astrophotonics, Opt Express 2009; 17:1963.Search in Google Scholar

[114] Bland-Hawthorn J., Lawrence J., Robertson G., Campbell S., Pope B., Betters C., et al., PIMMS: Photonic integrated multimode microspectrograph. Proc. SPIE, vol. 7735; 2010:1-9.Search in Google Scholar

[115] Leon-Saval S.G., Birks T.A., Bland-Hawthorn J., Englund M., Multimode fiber devices with single-mode performance, Opt Lett 2005; 30:2545.Search in Google Scholar

[116] Leon-Saval S.G., Argyros A., Bland-Hawthorn J., Photonic lanterns, Nanophotonics 2013; 2:429-40.Search in Google Scholar

[117] Birks T.A., Gris-Sánchez I., Yerolatsitis S., Leon-Saval S.G., Thomson R.R., The photonic lantern, Adv Opt Photonics 2015; 7:107.10.1364/AOP.7.000107Search in Google Scholar

[118] Trinh C.Q., Ellis S.C., Bland-Hawthorn J., Lawrence J.S., Horton A.J., Leon-Saval SG, et al., Gnosis: the First Instrument To Use Fiber Bragg Gratings for OH Suppression, Astron J 2013; 145:51.Search in Google Scholar

[119] Jovanovic N., Spaleniak I., Gross S., Ireland M., Lawrence J.S., Miese C.T., et al., Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide, Opt Express 2012; 20:17029.Search in Google Scholar

[120] Spaleniak I., Jovanovic N., Gross S., Ireland M.J., Lawrence J.S.,Withford M.J., Integrated photonic building blocks for nextgeneration astronomical instrumentation II: the multimode to single mode transition, Opt Express 2013; 21:27197.Search in Google Scholar

[121] Spaleniak I., Gross S., Jovanovic N., Williams R.J., Lawrence J.S., Ireland M.J., et al., Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings, Laser Photon Rev 2014; 8:L1-5.10.1002/lpor.201300129Search in Google Scholar

[122] Harris R.J., MacLachlan D.G., Choudhury D., Morris T.J., Gendron E., Basden A.G., et al., Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy, Mon Not R Astron Soc 2015; 450:428-34.Search in Google Scholar

[123] Pepe F., Ehrenreich D., Meyer M.R., Instrumentation for the detection and characterization of exoplanets, Nature 2014; 513:358-66.Search in Google Scholar

[124] Baldwin J.E., Haniff C.A., Mackay C.D., Warner P.J., Closure phase in high-resolution optical imaging, Nature 1986; 320:595-7.Search in Google Scholar

[125] Kotani T., Lacour S., Perrin G., Robertson G., Tuthill P., Pupil remapping for high contrast astronomy: results from an optical testbed, Opt Express 2009; 17:1925.Search in Google Scholar

[126] Norris B., Cvetojevic N., Gross S., Jovanovic N., Stewart P.N., Charles N., et al., High-performance 3D waveguide architecture for astronomical pupil-remapping interferometry, Opt Express 2014; 22:18335.Search in Google Scholar

[127] Charles N., Jovanovic N., Gross S., Stewart P., Norris B., O’Byrne J., et al., Design of optically path-length-matched, threedimensional photonic circuits comprising uniquely routed waveguides, Appl Opt 2012; 51:6489.Search in Google Scholar

[128] Lawson P.R., ed., Principles of long baseline stellar interferometry: course notes from the 1999 Michelson Summer School, August 15-19, 1999, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology; 2000.Search in Google Scholar

[129] Malbet F., Kern P., Schanen-Duport I., Berger J.-P., Rousselet- Perraut K., Integrated optics for astronomical interferometry, I. Concept and astronomical applications, Astron Astrophys Suppl Ser 1999; 145:135.10.1051/aas:1999496Search in Google Scholar

[130] Berger J.-P., Benech P., Schanen-Duport I.,Maury G.,Malbet F., Reynaud F., Combining up to eight telescope beams in a single chip, Proc. SPIE, vol. 4006, 2000:986-95.10.1117/12.390177Search in Google Scholar

[131] Benisty M., Berger J.-P., Jocou L., Labeye P., Malbet F., Perraut K., et al., An integrated optics beam combiner for the second generation VLTI instruments, Astron Astrophys 2009; 498:601-13.Search in Google Scholar

[132] Ródenas A., Martin G., Arezki B., Psaila N., Jose G., Jha A., et al., Three-dimensional mid-infrared photonic circuits in chalcogenide glass. Opt Lett 2012; 37:392-4.10.1364/OL.37.000392Search in Google Scholar PubMed

[133] Minardi S., Dreisow F., Gräfe M., Nolte S., Pertsch T., Threedimensional photonic component for multichannel coherence measurements, Opt Lett 2012; 37:3030.Search in Google Scholar

[134] Minardi S., Photonic lattices for astronomical interferometry, Mon Not R Astron Soc 2012; 422:2656-60.10.1111/j.1365-2966.2012.20832.xSearch in Google Scholar

[135] Saviauk A., Minardi S., Dreisow F., Nolte S., Pertsch T., 3D-integrated optics component for astronomical spectrointerferometry, Appl Opt 2013; 52:4556.Search in Google Scholar

[136] Cisco Visual Networking Index,, Accessed April 1, 2015.Search in Google Scholar

[137] Essiambre R.-J., Kramer G.,Winzer P.J., Foschini G.J., Goebel B., Capacity Limits of Optical Fiber Networks, J Light Technol 2010; 28:662-701.Search in Google Scholar

[138] Richardson D.J., Filling the light pipe, Science 2010; 330:327-8.Search in Google Scholar

[139] Li G., Bai N., Zhao N., Xia C., Space-division multiplexing: the next frontier in optical communication, Adv Opt Photonics 2014; 6:413.Search in Google Scholar

[140] Love J.D., Riesen N., Mode-selective couplers for few-mode optical fiber networks, Opt Lett 2012; 37:3990.Search in Google Scholar

[141] Willner A.E., Huang H., Yan Y., Ren Y., Ahmed N., Xie G., et al., Optical communications using orbital angular momentum beams, Adv Opt Photonics 2015; 7:66-106.Search in Google Scholar

[142] Tottori Y., Kobayashi T., Watanabe M., Low Loss Optical Connection Module for Seven-Core Multicore Fiber and Seven Single-Mode Fibers, IEEE Photonics Technol Lett 2012; 24:1926-8.Search in Google Scholar

[143] Watanabe K., Saito T., Imamura K., Shiino M., Development of fiber bundle type fan-out for multicore fiber, 2012 17th Opto- Electronics Commun. Conf. IEEE; 2012:475-6.10.1109/OECC.2012.6276529Search in Google Scholar

[144] Thomson R.R., Bookey H.T., Psaila N.D., Fender A., Campbell S.,MacphersonW.N., et al., Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications, Opt Express 2007; 15:11691-7.Search in Google Scholar

[145] Thomson R.R., Harris R.J., Birks T.A., Brown G., Allington- Smith J., Bland-Hawthorn J., Ultrafast laser inscription of a 121- waveguide fan-out for astrophotonics, Opt Lett 2012; 37:2331.Search in Google Scholar

[146] Optoscribe 3D Optofan, Search in Google Scholar

[147] Thornburg W.Q., Corrado B.J., Zhu X.D., Selective launching of higher-order modes into an optical fiber with an optical phase shifter, Opt Lett 1994; 19:454.Search in Google Scholar

[148] Koebele C., Salsi M., Sperti D., Tran P., Brindel P., Mardoyan H., et al., Two mode transmission at 2 × 100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer, Opt Express 2011; 19:16593-600.Search in Google Scholar

[149] Winzer P.J., Foschini G.J., MIMO capacities and outage probabilities in spatially multiplexed optical transport systems, Opt Express 2011; 19:16680-96.Search in Google Scholar

[150] Ryf R., Fontaine N.K., Chen H., Guan B., Huang B., Esmaeelpour M., et al., Mode-multiplexed transmission over conventional graded-index multimode fibers, Opt Express 2015; 23:235.Search in Google Scholar

[151] Youngquist R.C., Brooks J.L., Shaw H.J., Two-mode fiber modal coupler, Opt Lett 1984; 9:177.Search in Google Scholar

[152] Riesen N., Love J.D., Ultra-Broadband Tapered Mode-Selective Couplers for Few-Mode Optical Fiber Networks, IEEE Photonics Technol Lett 2013; 25:2501-4.Search in Google Scholar

[153] Fontaine N.K., Ryf R., Bland-Hawthorn J., Leon-Saval S.G., Geometric requirements for photonic lanterns in space division multiplexing, Opt Express 2012; 20:27123.Search in Google Scholar

[154] Mitchell P., Brown G., Thomson R.R., Psaila N., Kar A., 57 Channel (19 × 3) Spatial Multiplexer Fabricated using Direct Laser Inscription, Opt. Fiber Commun. Conf. 2014: M3K.5.10.1364/OFC.2014.M3K.5Search in Google Scholar

[155] Van Uden R.G.H., Correa R.A., Lopez E.A., Huijskens F.M., Xia C., Li G., et al., Ultra-high-density spatial divisionmultiplexingwith a few-mode multicore fibre, Nat Photonics 2014; 8:865-70.Search in Google Scholar

[156] Leon-Saval S.G., Fontaine N.K., Salazar-Gil J.R., Ercan B., Ryf R., Bland-Hawthorn J., Mode-selective photonic lanterns for spacedivision multiplexing, Opt Express 2014; 22:1036.Search in Google Scholar

[157] Yerolatsitis S., Gris-Sánchez I., Birks T.A., Adiabaticallytapered fiber mode multiplexers, Opt Express 2014; 22:608.Search in Google Scholar

[158] Guan B., Ercan B., Fontaine N.K., Scott R.P., Yoo S.J.B., Mode- Group-Selective Photonic Lantern based on Integrated 3D Devices Fabricated by Ultrafast Laser Inscription, Opt. Fiber Commun. Conf., vol. 1; 2015:W2A.16.10.1364/OFC.2015.W2A.16Search in Google Scholar

[159] Chen H., Fontaine N., Ryf R., Guan B., Yoo S.J.B., Koonen A.M.J., Design Constraints of Photonic-lantern Spatial Multiplexer based on Laser-inscribed 3D-waveguide Technology, J Light Technol 2014; 8724:1-1.Search in Google Scholar

[160] Riesen N., Gross S., Love J.D., Withford M.J., Femtosecond direct-written integrated mode couplers, Opt Express 2014; 22:29855-61.Search in Google Scholar

[161] Riesen N., Love J.D., Tapered Velocity Mode-Selective Couplers, J Light Technol 2013; 31:2163-9.Search in Google Scholar

[162] Huang H., Ren Y., Xie G., Yan Y., Yue Y., Ahmed N., et al., Tunable orbital angular momentummode filter based on optical geometric transformation, Opt Lett 2014; 39:1689-92.Search in Google Scholar

[163] Politi A., Matthews J.C.F., Thompson M.G., O’Brien J.L., Integrated quantum photonics, IEEE J Sel Top Quantum Electron 2009; 15:1673-84.10.1109/JSTQE.2009.2026060Search in Google Scholar

[164] Tanzilli S., Martin A., Kaiser F., de Micheli M.P., Alibart O., Ostrowsky D.B., On the genesis and evolution of integrated quantum optics, Laser Photonics Rev 2012; 6:115-43.Search in Google Scholar

[165] Marshall G.D., Politi A., Matthews J.C.F., Dekker P., Ams M., Withford M.J., et al., Laser writtenwaveguide photonic quantum circuits, Opt Express 2009; 17:12546-54.Search in Google Scholar

[166] Sansoni L., Sciarrino F., Vallone G.,Mataloni P., Crespi A., Ramponi R., et al., Polarization Entangled State Measurement on a Chip, Phys Rev Lett 2010; 105:1-4.Search in Google Scholar

[167] Meany T., Gräfe M., Heilmann R., Perez-Leija A., Gross S., Steel M.J., et al., Laser written circuits for quantum photonics, Laser Photon Rev 2015; 9:363-384.Search in Google Scholar

[168] Poulios K., Keil R., Fry D., Meinecke J.D.A., Matthews J.C.F., Politi A., et al., Quantumwalks of correlated photon pairs in twodimensional waveguide arrays, Phys Rev Lett 2014; 112:1-5.Search in Google Scholar

[169] Gräfe M., Heilmann R., Perez-Leija A., Keil R., Dreisow F., Heinrich M., et al., On-chip generation of high-order single-photon W-states, Nat Photonics 2014:1-6.10.1038/nphoton.2014.204Search in Google Scholar

[170] Meany T., Delanty M., Gross S.,Marshall G.D., Steel M.J.,Withford M.J., Non-classical interference in integrated 3D multiports, Opt Express 2012; 20:26895.Search in Google Scholar

[171] Spagnolo N., Vitelli C., Aparo L.,Mataloni P., Sciarrino F., Crespi A., et al., Three-photon bosonic coalescence in an integrated tritter, Nat Commun 2013; 4:1606.Search in Google Scholar

[172] Chaboyer Z., Meany T., Helt L.G., Withford M.J., Steel M.J., Tunable quantum interference in a 3D integrated circuit, Sci Rep 2015; 5:9601.Search in Google Scholar

[173] Szameit A., Nolte S., Discrete optics in femtosecond-laserwritten photonic structures, J Phys B At Mol Opt Phys 2010; 43:163001.10.1088/0953-4075/43/16/163001Search in Google Scholar

[174] Heinrich M., Keil R., Dreisow F., Tünnermann A., Szameit A., Nolte S., Nonlinear discrete optics in femtosecond laser-written photonic lattices, Appl Phys B Lasers Opt 2011; 104:469-80.Search in Google Scholar

[175] Szameit A., Dreisow F., Pertsch T., Nolte S., Tünnermann A., Control of directional evanescent coupling in fs laser written waveguides, Opt Express 2007; 15:1579-87.Search in Google Scholar

[176] Szameit A., Dreisow F., Heinrich M., Pertsch T., Nolte S., Tünnermann A., et al., Image reconstruction in segmented femtosecond laser-written waveguide arrays, Appl Phys Lett 2008; 93:2006-9.Search in Google Scholar

[177] Keil R., Heinrich M., Dreisow F., Pertsch T., Tünnermann A., Nolte S., et al., All-optical routing and switching for threedimensional photonic circuitry, Sci Rep 2011; 1:1-6.Search in Google Scholar

[178] Gräfe M., Solntsev A.S., Keil R., Sukhorukov A.A., Heinrich M., Tünnermann A., et al., Biphoton generation in quadratic waveguide arrays: A classical optical simulation, Sci Rep 2012; 2:1-5.Search in Google Scholar

[179] Guzmán-Silva D., Mejía-Cortés C., Bandres M.A., Rechtsman M.C., Weimann S., Nolte S., et al., Experimental observation of bulk and edge transport in photonic Lieb lattices, New J Phys 2014; 16.10.1364/NP.2014.NTh3A.6Search in Google Scholar

[180] Vicencio R.A., Cantillano C., Morales-Inostroza L., Real B., Mejía-Cortés C., Weimann S., et al., Observation of Localized States in Lieb Photonic Lattices, Phys Rev Lett 2015; 114:245503.Search in Google Scholar

[181] Mukherjee S., Spracklen A., Choudhury D., Goldman N., Öhberg P., Andersson E., et al., Observation of a Localized Flat- Band State in a Photonic Lieb Lattice, Phys Rev Lett 2015; 114:245504.Search in Google Scholar

[182] Rechtsman M.C., Zeuner J.M., Tünnermann A., Nolte S., Segev M., Szameit A., Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures, Nat Photonics 2013; 7:153-8.Search in Google Scholar

[183] Rechtsman M.C., Plotnik Y., Zeuner J.M., Song D., Chen Z., Szameit A., et al., Topological creation and destruction of edge states in photonic graphene, Phys Rev Lett 2013; 111:1-5.Search in Google Scholar

[184] Zeuner J.M., Rechtsman M.C., Nolte S., Szameit A., Edge states in disordered photonic graphene, Opt Lett 2014; 39:602. Search in Google Scholar

[185] Crespi A., Corrielli G., Valle G. Della, Osellame R., Longhi S., Dynamic band collapse in photonic graphene, New J Phys 2013; 15:013012.Search in Google Scholar

[186] Plotnik Y., Rechtsman M.C., Song D., Heinrich M., Zeuner J.M., Nolte S., et al., Observation of unconventional edge states in “photonic graphene”, Nat Mater 2014; 13:57-62.Search in Google Scholar

[187] Rechtsman M.C., Zeuner J.M., Plotnik Y., Lumer Y., Podolsky D., Dreisow F., et al., Photonic Floquet topological insulators, Nature 2013; 496:196-200.Search in Google Scholar

[188] Masuda M., Sugioka K., Cheng Y., Aoki N., Kawachi M., Shihoyama K., et al., 3-D microstructuring inside photosensitive glass by femtosecond laser excitation, Appl Phys A Mater Sci Process 2003; 76:857-60.Search in Google Scholar

[189] Marcinkevičius A., Juodkazis S., Watanabe M., Miwa M., Matsuo S., Misawa H., et al., Femtosecond laser-assisted threedimensional microfabrication in silica, Opt Lett 2001; 26:277.Search in Google Scholar

[190] Hnatovsky C., Taylor R.S., Simova E., Bhardwaj V.R., Rayner D.M., Corkum P.B., Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica, Opt Lett 2005; 30:1867-9.Search in Google Scholar

[191] Crespi A., Gu Y., Ngamsom B., Hoekstra H.J.W.M., Dongre C., Pollnau M., et al., Three-dimensionalMach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection, Lab Chip 2010; 10:1167-73.Search in Google Scholar

[192] Guduru S.S.K., Paič P., Bolis S., Osellame R., Ramponi R., Virgili T., et al., Waveguide arrays for light harvesting in microfluidic chips, Opt Eng 2014; 53:071811.Search in Google Scholar

[193] Osellame R., Hoekstra H.J.W.M., Cerullo G., Pollnau M., Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips, Laser Photon Rev 2011; 5:442-63.Search in Google Scholar

[194] Sugioka K., Cheng Y., Femtosecond laser processing for optofluidic fabrication, Lab Chip 2012; 12:3576.Search in Google Scholar

[195] Sugioka K., Cheng Y., Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications, 1st ed., Springer- Verlag London; 2014.10.1007/978-1-4471-5541-6Search in Google Scholar

[196] Lee K.K.C., Mariampillai A., Haque M., Standish B.A., Yang V.X.D., Herman P.R., 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides, Opt Express 2013; 21:2681-7.Search in Google Scholar

[197] Haque M., Lee K.K.C., Ho S., Fernandes L.A., Herman P.R., Chemical-assisted femtosecond laser writing of lab-in-fibers, Lab Chip 2014; 14:3817-29. Search in Google Scholar

Received: 2015-7-7
Accepted: 2015-7-30
Published Online: 2015-11-6

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 25.3.2023 from
Scroll Up Arrow