Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 30, 2015

Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

Marcel Di Vece, Giorgos Giannakoudakis, Astrid Bjørkøy and Wingjohn Tang
From the journal Nanophotonics

Abstract

The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

References

[1] Ozbay, E. Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006;311:189-193. 10.1126/science.1114849Search in Google Scholar PubMed

[2] Novotny L. Hecht, B.; Principles of Nano-Optics, Cambridge University Press, 2008. 10.1017/CBO9780511794193Search in Google Scholar

[3] Kauranen, M. Zayats, A.V. Nonlinear plasmonics. Nat. Photon. 2012;6:737. 10.1038/nphoton.2012.244Search in Google Scholar

[4] Deeb, C. Zhou, X. Miller, R. Gray, S.K. Marguet, S. Plain, J. Wiederrecht, G.P. Bachelor, R. Size Dependence of the Plasmonic Near-Field Measured via Single-Nanoparticle Photoimaging. J. Phys. Chem. C 2012;116:24734-24740. Search in Google Scholar

[5] Ciracě, C. Hill, R.T. Mock, J.J. Urzhumov, Y. Fernández- Domínguez, A.I. Maier, S.A. Pendry, J.B. Chilkoti, A. Smith, D.R. Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012;337:1072-1074. 10.1126/science.1224823Search in Google Scholar PubMed PubMed Central

[6] Nie, S. Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997;275:1102-1106. 10.1126/science.275.5303.1102Search in Google Scholar PubMed

[7] Michaels, A.M. Jiang, J. Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000;104:11965-11971. Search in Google Scholar

[8] García-Martín, A. Ward, D.R. Natelson, D. Cuevas, J.C. Field enhancement in subnanometer metallic gaps. Phys. Rev. B 2011;83:193404-193404-4. 10.1103/PhysRevB.83.193404Search in Google Scholar

[9] Nien, L.W. Lin, S.C. Chao, B.K. Chen, M.J. Li, J.H. Hsueh, C.H. Giant Electric Field Enhancement and Localized Surface Plasmon Resonance by Optimizing Contour Bowtie Nanoantennas. J. Phys. Chem. C 2013;117:25004-25011. Search in Google Scholar

[10] Hao E. Schatz, G.C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004;120:357-366. Search in Google Scholar

[11] Yurtsever A. Zewail, A.H. Direct Visualization of Near-Fields in Nanoplasmonics and Nanophotonics. Nano Lett. 2012;12:3334- 3338. 10.1021/nl301643kSearch in Google Scholar PubMed

[12] Herink, G. Solli, D.R. Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012;483:190-193. 10.1038/nature10878Search in Google Scholar PubMed

[13] Grubisic, A. Ringe, E. Cobley, C.M. Xia, Y.Marks, L.D. Van Duyne, R.P. Nesbitt, D.J. Plasmonic Near-Electric Field Enhancement Effects in Ultrafast Photoelectron Emission: Correlated Spatial and Laser Polarization Microscopy Studies of Individual Ag Nanocubes. Nano Lett. 2012;12:4823-4829. 10.1021/nl302271uSearch in Google Scholar PubMed

[14] Dombi, P. Hörl, A. Rácz, P. Márton, I. Trügler, A. Krenn, J.R. Hohenester, U. Ultrafast Strong-Field Photoemission from Plasmonic Nanoparticles. Nano Lett. 2013;13:674-678. 10.1021/nl304365eSearch in Google Scholar PubMed PubMed Central

[15] Einstein A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 1905;17:132-148. 10.1002/andp.19053220607Search in Google Scholar

[16] Keldysh, L.V. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys. JETP 1965;20:1307-1314. Search in Google Scholar

[17] Zherebtsov, S. Fennel, T. Plenge, J. Antonsson, E. Znakovskaya1, I. Wirth, A. Herrwerth, O. Süßmann, F. Peltz, C. Ahmad, I. Trushin, S.A. Pervak, V. Karsch, S. Vrakking, M.J.J.J. Langer, B. Graf, C. Stockman, M.I. Krausz, F. Rühl, E. and Kling M.F. Controlled near field enhanced electron acceleration from dielectric nanospheres with intense few cycle laser fields. Nat. Phys.2011;7:656-662 10.1038/nphys1983Search in Google Scholar

[18] Süßmann F. Seiffert, L. Zherebtsov, S. Mondes, V. Stierle, J. Arbeiter, M. Plenge, J. Rupp, P. Peltz, C. Kessel, A. Trushin, S.A. Ahn, B. Kim, D. Graf, C. Rühl, E. Kling M.F. Fennel, T. Field propagation-induced directionality of carrier-envelope phasecontrolled photoemission from nanospheres. Nat. Commun. 2015;6:7944-7953 Search in Google Scholar

[19] Passig, J. Irsig, R. Truong, N.X. Fennel, Th. Tiggesbäumker, J. Meiwes-Broer, K.H. Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy. New J. Phys. 2012;14:085020-085020-13. 10.1088/1367-2630/14/8/085020Search in Google Scholar

[20] Davidovits, P. Egger, M.D. Scanning Laser Microscope. Nature 1969;223:831-831. 10.1038/223831a0Search in Google Scholar PubMed

[21] Haberland, H.Mail, M. Mossier, M. Oiang, Y. Reiners, T. Thurner, Y. Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol. A. 1994;12:2925-2930. Search in Google Scholar

[22] de Heer, W.A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993;65:611- 676. Search in Google Scholar

[23] Wegner, K. Piseri, P. Tafreshi, H.V. Milani, P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D: Appl. Phys. 2006;39:R439–R459. 10.1088/0022-3727/39/22/R02Search in Google Scholar

[24] Polking, M.J. Umbach, C.C. Radiation-induced surface conductivity in an alkaline-earth boroaluminosilicate glass measured with elevated-temperature scanning probe microscopy. J. Am. Ceram. Soc. 2005;88:2442–2446. Search in Google Scholar

[25] Kreibig, U. Vollmer, M. Optical Properties of Metal Clusters. Springer, Berlin, 1995. 10.1007/978-3-662-09109-8Search in Google Scholar

[26] Dulkeith, E. Niedereichholz, T. Klar, T.A. Feldmann, J. von Plessen, G. Gittins, D.I. Mayya, K.S. Caruso, F. Plasmon emission in photoexcited gold nanoparticles. Phys Rev. B. 2004;70:205424-205424-4. 10.1103/PhysRevB.70.205424Search in Google Scholar

[27] Fennel, Th. Döppner, T. Passig, J. Schaal, Ch. Tiggesbäumker, J. Meiwes-Broer, K.H. Plasmon-Enhanced Electron Acceleration in Intense Laser Metal-Cluster Interactions. Phys. Rev. Lett. 2007;98:143401-143401-4. 10.1103/PhysRevLett.98.143401Search in Google Scholar PubMed

[28] Fang, Z. Zhen, Y.Z. Neumann, O. Polman, A. García de Abajo, F.J. Nordlander, P. Halas, N.J. Evolution of Light-Induced Vapor Generation at a Liquid-Immersed Metallic Nanoparticle. Nano Lett. 2013;13:1736-1742. 10.1021/nl4003238Search in Google Scholar PubMed PubMed Central

[29] Lukianova-Hleb,E. Hu, Y. Latterini, L. Tarpani, L. Lee, S. Drezek, R.A. Hafner, J.H. Lapotko, D.O. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated around Plasmonic Nanoparticles. ACS Nano 2010;4:2109–2123. 10.1021/nn1000222Search in Google Scholar PubMed PubMed Central

[30] Boustead, I. Charlesby, A. Thermoluminescence in polyethylene. I. Electron traps. Proc. Roy. Soc. Lond. A. 1970;316:291- 302. Search in Google Scholar

[31] Charlesby, A. Partridge, R.H. The thermoluminescence of irradiated polyethylene and other polymers. Proc. Roy. Soc. Lond. A., 1963;271:170-187. Search in Google Scholar

[32] Linkens, A. Vanderschueren, J. Experimental studies on the relationship between thermoluminescence and molecular relaxation processes in polymers. Journal of Electrostatics, 1977;3:149-154. 10.1016/0304-3886(77)90085-7Search in Google Scholar

[33] Boustead, I, Thermoluminescence in polyethylene: II. Dose kinetics. Proc. Roy. Soc. Lond. A, 1970;318:459-471. Search in Google Scholar

[34] Nyswander R.E. Cohn, B. Measurement of Thermoluminescence of glass exposed to light. J. Opt. Soc. A 1930;20:131-136. Search in Google Scholar

[35] Johns H.E, Laughlin J.S. Interaction of radiation with matter.In: Hine G, Brownell G, eds. Radiation Dosimetry.NewYork, NY: Academic Press; 1956;49. 10.1016/B978-1-4832-3257-7.50010-XSearch in Google Scholar

[36] Thompson, A.C. Vaughan, D. Search in Google Scholar

[Eds.], X-ray Data Booklet, second ed., Lawrence Berkeley National Laboratory, Berkeley, 2001. Search in Google Scholar

[37] Herz, R.H. The Recording of Electron Tracks in Photographic Emulsions. Phys. Rev. 1949;75:479-485. Search in Google Scholar

[38] Hofer, K.G. Biophysical Aspects of Auger Processes. Acta Oncologica 1996;35:189-196. 10.3109/02841869609104028Search in Google Scholar PubMed

[39] Egerton, R.F.; Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 2009;72:016502-25. Search in Google Scholar

[40] Hovington, P. Druiin, D. Gauvin, R. CASINO: A new Monte Carlo code in C language for electron beam interaction —part I: Description of the program. Scanning 1997;19:1–14. 10.1002/sca.4950190101Search in Google Scholar

[41] National Institute of Standards and Technology, estar database Search in Google Scholar

[42] Herink, G. Solli, D.R. Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 2012;483:190-193. 10.1038/nature10878Search in Google Scholar PubMed

[43] Muskens, O. Christofilos, D. Del Fatti, N. Vallée, F. Optical response of a single noble metal nanoparticle. J. Opt. A: Pure Appl. Opt. 2006;8:S264–S272. 10.1088/1464-4258/8/4/S28Search in Google Scholar

[44] Corkum, Plasma Perspective on Strong-Field Multiphoton Ionisation. Phys. Rev. Lett. 1993;71:1994-1997 10.1103/PhysRevLett.71.1994Search in Google Scholar PubMed

[45] Saalman, U. Rost, J.M. Rescattering for Extended Atomic Systems. Phys. Rev. Lett. 2008;100: 133006-130007-4 10.1103/PhysRevLett.100.133006Search in Google Scholar PubMed

[46] Fennel, Th. Meiwes-Broer, K.-H. Tiggesbäumker, J. Reinhard P.- G. Dinh P. M. and Suraud E. Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 2010:82;1793-1842 10.1103/RevModPhys.82.1793Search in Google Scholar

[47] Herrmann, L.O. Valev, V.K. Tserkezis, C. Barnard, J.S. Kasera, S. Scherman, O.A. Aizpurua, J. Baumberg, J.J. Threading plasmonic nanoparticle strings with light. Nat. Commun. 2014;5:4568- 4568-6. 10.1038/ncomms5568Search in Google Scholar PubMed PubMed Central

Received: 2015-8-5
Accepted: 2015-11-11
Published Online: 2015-12-30

© 2015 Marcel Di Vece et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow