Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 11, 2016

Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

  • Prineha Narang , Ravishankar Sundararaman and Harry A. Atwater
From the journal Nanophotonics

Abstract

Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic ‘hot’ carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.

References

[1] John Pendry. Playing tricks with light. Science, 285(5434):1687-1688, 09 1999.10.1126/science.285.5434.1687Search in Google Scholar

[2] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424(6950):824-830, 08 2003.10.1038/nature01937Search in Google Scholar PubMed

[3] Jon A. Schuller, Edward S. Barnard, Wenshan Cai, Young Chul Jun, Justin S. White, and Mark L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat Mater, 9(3):193-204, 03 2010.10.1038/nmat2630Search in Google Scholar PubMed

[4] Stefan Alexander Maier. Plasmonics: fundamentals and applications. Springer Science and Business Media, 2007.Search in Google Scholar

[5] E. Altewischer, M. P. van Exter, and J. P. Woerdman. Plasmonassisted transmission of entangled photons. Nature, 418(6895):304-306, 07 2002.10.1038/nature00869Search in Google Scholar PubMed

[6] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat Photon, 4(2):83-91, 02 2010.10.1038/nphoton.2009.282Search in Google Scholar

[7] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin. Quantum optics with surface plasmons. Phys. Rev. Lett., 97:053002, Aug 2006.10.1103/PhysRevLett.97.053002Search in Google Scholar PubMed

[8] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450(7168):402-406, 11 2007.10.1038/nature06230Search in Google Scholar PubMed

[9] Darrick E. Chang, Anders S. Sorensen, Eugene A. Demler, and Mikhail D. Lukin. A single-photon transistor using nanoscale surface plasmons. Nat Phys, 3(11):807-812, 11 2007.10.1038/nphys708Search in Google Scholar

[10] D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov. Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Letters, 12(3):1333-1339, 2012.Search in Google Scholar

[11] Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev. Exciton-plasmon-photon conversion in plasmonic nanostructures. Physical Review Letters, 99(13):136802-, 09 2007.10.1103/PhysRevLett.99.136802Search in Google Scholar PubMed

[12] Z. Fang. Graphene-antenna sandwich photodetector. Nano Lett., 12:3808-3813, 2012.10.1021/nl301774eSearch in Google Scholar PubMed

[13] Zheyu Fang, Yumin Wang, Zheng Liu, Andrea Schlather, Pulickel M. Ajayan, Frank H. L. Koppens, Peter Nordlander, and Naomi J. Halas. Plasmon-induced doping of graphene. ACS Nano, 6(11):10222-10228, 2014/08/28 2012.10.1021/nn304028bSearch in Google Scholar PubMed

[14] Vincenzo Giannini, Antonio I. Fernández-Domínguez, Susannah C. Heck, and Stefan A. Maier. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical Reviews, 111(6):3888-3912, 2014/08/28 2011.Search in Google Scholar

[15] H. Chalabi, D. Schoen, and M. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett., 14:1374-1380, 2014.10.1021/nl4044373Search in Google Scholar PubMed

[16] Harry A. Atwater and Albert Polman. Plasmonics for improved photovoltaic devices. Nat Mater, 9(3):205-213, 03 2010.10.1038/nmat2629Search in Google Scholar PubMed

[17] Eric W. McFarland and Jing Tang. A photovoltaic device structure based on internal electron emission. Nature, 421(6923):616-618, 02 2003.10.1038/nature01316Search in Google Scholar PubMed

[18] Giuliana Di Martino, Yannick Sonnefraud, Stéphane Kéna- Cohen, Mark Tame, Şahin K. Özdemir, M. S. Kim, and Stefan A. Maier. Quantum statistics of surface plasmon polari tons in metallic stripe waveguides. Nano Letters, 12(5):2504-2508, 2014/10/20 2012.10.1021/nl300671wSearch in Google Scholar PubMed

[19] G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier. Observation of quantum interference in the plasmonic hong-oumandel effect. Phys. Rev. Applied, 1:034004, Apr 2014.10.1103/PhysRevApplied.1.034004Search in Google Scholar

[20] James S. Fakonas, Hyunseok Lee, Yousif A. Kelaita, and Harry A. Atwater. Two-plasmon quantum interference. Nat Photon, 8(4):317-320, 04 2014.10.1038/nphoton.2014.40Search in Google Scholar

[21] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim. Quantum plasmonics. Nat Phys, 9(6):329-340, 06 2013.10.1038/nphys2615Search in Google Scholar

[22] M. S. Tame, C. Lee, J. Lee, D. Ballester, M. Paternostro, A. V. Zayats, and M. S. Kim. Single-photon excitation of surface plasmon polaritons. Physical Review Letters, 101(19):190504-, 11 2008.10.1103/PhysRevLett.101.190504Search in Google Scholar PubMed

[23] D. Ballester, M. S. Tame, C. Lee, J. Lee, and M. S. Kim. Longrange surface-plasmon-polariton excitation at the quantum level. Physical Review A, 79(5):053845-, 05 2009.10.1103/PhysRevA.79.053845Search in Google Scholar

[24] S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett., 97:017402, 2006.10.1103/PhysRevLett.97.017402Search in Google Scholar PubMed

[25] Pascal Anger, Palash Bharadwaj, and Lukas Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96:113002, Mar 2006.10.1103/PhysRevLett.96.113002Search in Google Scholar PubMed

[26] R. D. Artuso and G. W. Bryant. Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects. Phys. Rev. B, 82:195419, 2010.Search in Google Scholar

[27] Shaunak Mukherjee, Florian Libisch, Nicolas Large, Oara Neumann, Lisa V. Brown, Jin Cheng, J. Britt Lassiter, Emily A. Carter, Peter Nordlander, and Naomi J. Halas. Hot electrons do the impossible: Plasmon-induced dissociation of h2 on au. Nano Letters, 13(1):240-247, 2013/07/23 2012.Search in Google Scholar

[28] Yukina Takahashi and Tetsu Tatsuma. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Applied Physics Letters, 99(18):182110-3, 10 2011.10.1063/1.3659476Search in Google Scholar

[29] Fuming Wang and Nicholas A. Melosh. Plasmonic energy collection through hot carrier extraction. Nano Letters, 11(12):5426-5430, 2013/07/23 2011.10.1021/nl203196zSearch in Google Scholar PubMed

[30] P. James Schuck. Nanoimaging: Hot electrons go through the barrier. Nat Nano, 8(11):799-800, 11 2013.10.1038/nnano.2013.228Search in Google Scholar PubMed

[31] Syed Mubeen, Joun Lee, Nirala Singh, Stephan Kramer, Galen D. Stucky, and Martin Moskovits. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nano, 8(4):247-251, 04 2013.10.1038/nnano.2013.18Search in Google Scholar PubMed

[32] Suljo Linic, Phillip Christopher, and David B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater, 10(12):911-921, 12 2011.10.1038/nmat3151Search in Google Scholar PubMed

[33] S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee, and M. Moskovits. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett., 11:5548-5552, 2011.Search in Google Scholar

[34] J. Adleman, D. Boyd, D. Goodwin, and D. Psaltis. Heterogenous catalysis mediated by plasmon heating. Nano Lett., 9:4417-4423, 2009. 10.1021/nl902711nSearch in Google Scholar PubMed

[35] K. Awazu. Plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc., 130:1676-1680, 2008.10.1021/ja076503nSearch in Google Scholar PubMed

[36] L. Brus. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule raman spectroscopy. Acc. Chem. Res., 41:1742-1749, 2008.Search in Google Scholar

[37] S. Buntin, L. Richter, R. Cavanagh, and D. King. Optically driven surface reactions: Evidence for the role of hot electrons. Phys. Rev. Lett., 61:1321-1324, 1988.Search in Google Scholar

[38] P. Christopher, D. B. Ingram, and S. Linic. Enhancing photochemical activity of semiconductor nanoparticles with optically active ag nanostructures: Photochemistry mediated by ag surface plasmons. J. Phys. Chem. C, 19:9173-9177, 2010.Search in Google Scholar

[39] P. Christopher, H. Xin, and S. Linic. Visible light enhanced catalytic oxidation reactions on plasmonic ag nanostructures. Nature Chem., 3:467-472, 2011.10.1038/nchem.1032Search in Google Scholar PubMed

[40] J-J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai. Plasmonic photocatalyst for h2 evolution in photocatalytic water splitting. J. Phys. Chem. C, 115:210-216, 2011.10.1021/jp1074048Search in Google Scholar

[41] S. K. Cushing. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc, 134:15033-15041, 2012.10.1021/ja305603tSearch in Google Scholar PubMed

[42] S. K. Cushing and N. Q. Wu. Plasmon-enhanced solar energy harvesting. Interface, 22:63-67, 2013.10.1149/2.F08132ifSearch in Google Scholar

[43] C. Frischkorn and M. Wolf. Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem. Rev., 106:4207-4233, 2006.Search in Google Scholar

[44] Cesar Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photon, 8(2):95-103, 02 2014.10.1038/nphoton.2013.238Search in Google Scholar

[45] Martin Moskovits. The case for plasmon-derived hot carrier devices. Nat Nano, 10(1):6-8, 01 2015.10.1038/nnano.2014.280Search in Google Scholar PubMed

[46] Mark L. Brongersma, Naomi J. Halas, and Peter Nordlander. Plasmon-induced hot carrier science and technology. Nat Nano, 10(1):25-34, 01 2015.10.1038/nnano.2014.311Search in Google Scholar PubMed

[47] Viktoriia E. Babicheva, Sergei V. Zhukovsky, Renat Sh. Ikhsanov, Igor E. Protsenko, Igor V. Smetanin, and Alexander Uskov. Hot electron photoemission from plasmonic nanostructures: The role of surface photoemission and transition absorption. ACS Photonics, 07 2015.10.1021/acsphotonics.5b00059Search in Google Scholar

[48] Hui Zhang and Alexander O. Govorov. Optical generation of hot plasmonic carriers in metal nanocrystals: The effects of shape and field enhancement. The Journal of Physical Chemistry C, 118(14):7606-7614, 2014.Search in Google Scholar

[49] Bob Y. Zheng, Hangqi Zhao, Alejandro Manjavacas, Michael McClain, Peter Nordlander, and Naomi J. Halas. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun, 6, 07 2015.10.1038/ncomms8797Search in Google Scholar PubMed PubMed Central

[50] Zubin Jacob and Vladimir M. Shalaev. Plasmonics goes quantum. Science, 334(6055):463-464, 10 2011.10.1126/science.1211736Search in Google Scholar PubMed

[51] Denis Jacquemin, Benedetta Mennucci, and Carlo Adamo. Excited-state calculations with td-dft: from benchmarks to simulations in complex environments. Physical Chemistry Chemical Physics, 13(38):16987-16998, 2011.Search in Google Scholar

[52] J D Whitfield, M-H Yung, D G Tempel, S Boixo, and A Aspuru- Guzik. Computational complexity of time-dependent density functional theory. New Journal of Physics, 16(8):083035, 2014. 10.1088/1367-2630/16/8/083035Search in Google Scholar

[53] P. Song, P. Nordlander, and S. Gao. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J Chem Phys, 134(7):074701, Feb 2011.10.1063/1.3554420Search in Google Scholar PubMed

[54] J. Zuloaga, E. Prodan, and P. Nordlander. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett., 9(2):887-891, Feb 2009.10.1021/nl803811gSearch in Google Scholar PubMed

[55] A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander. Quantum plexcitonics: strongly interacting plasmons and excitons. Nano Lett., 11(6):2318-2323, Jun 2011.10.1021/nl200579fSearch in Google Scholar PubMed

[56] Ruben Esteban, Andrei G. Borisov, Peter Nordlander, and Javier Aizpurua. Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun, 3:825, 05 2012.10.1038/ncomms1806Search in Google Scholar PubMed

[57] Jun Yan, Karsten W. Jacobsen, and Kristian S. Thygesen. Conventional and acoustic surface plasmons on noble metal surfaces: A time-dependent density functional theory study. Phys. Rev. B, 86:241404, Dec 2012.10.1103/PhysRevB.86.241404Search in Google Scholar

[58] Christine M. Aikens, Shuzhou Li, and George C. Schatz. From discrete electronic states to plasmons: Tddft optical absorption properties of ag n ( n = 10, 20, 35, 56, 84, 120) tetrahedral clusters. The Journal of Physical Chemistry C, 112(30):11272-11279, 07 2008.10.1021/jp802707rSearch in Google Scholar

[59] Nicola Durante, Alessandro Fortunelli, Michel Broyer, and Mauro Stener. Optical properties of au nanoclusters from td-dft calculations. The Journal of Physical Chemistry C, 115(14):6277-6282, 2013/11/11 2011.10.1021/jp112217gSearch in Google Scholar

[60] Gyun-Tack Bae and Christine M. Aikens. Time-dependent density functional theory studies of optical properties of au nanoparticles: Octahedra, truncated octahedra, and icosahedra. The Journal of Physical Chemistry C, 09 2015.Search in Google Scholar

[61] P. Bharadwaj, B. Deutsch, and L. Novotny. Optical antennas. Adv. Opt. Photon., 1:438-483, 2009.10.1364/AOP.1.000438Search in Google Scholar

[62] L. Landau. On the vibration of the electronic plasma. J. Phys. USSR, 10, 1946.Search in Google Scholar

[63] Alexander O. Govorov, Hui Zhang, and Yurii K. Gun’ko. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. The Journal of Physical Chemistry C, 117(32):16616-16631, 2013/11/11 2013.10.1021/jp405430mSearch in Google Scholar

[64] Alejandro Manjavacas, Jun G. Liu, Vikram Kulkarni, and Peter Nordlander. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano, 8(8):7630-7638, 2014/08/28 2014.10.1021/nn502445fSearch in Google Scholar PubMed

[65] A. O. Govorov, H. Zhang, H. V. Demir, and Y. K. Gun’ko. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today, 9:85-101, 2014.Search in Google Scholar

[66] Ravishankar Sundararaman, Prineha Narang, Adam S. Jermyn, William A. Goddard III, and Harry A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 5:5788, 2014.10.1038/ncomms6788Search in Google Scholar PubMed PubMed Central

[67] Ana M. Brown, Ravishankar Sundararaman, Prineha Narang, III William A. Goddard, and Harry A. Atwater. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano, 10:957, 2016.Search in Google Scholar

[68] M. Bernardi, J. Mustafa, J.B. Neaton, and S.G. Louie. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun., In press, 2015.10.1038/ncomms8044Search in Google Scholar PubMed PubMed Central

[69] Jesse Noffsinger, Emmanouil Kioupakis, Chris G. Van de Walle, Steven G. Louie, and Marvin L. Cohen. Phononassisted optical absorption in silicon from first principles. Phys. Rev. Lett., 108:167402, Apr 2012.10.1103/PhysRevLett.108.167402Search in Google Scholar PubMed

[70] Emmanouil Kioupakis, Patrick Rinke, André Schleife, Friedhelm Bechstedt, and Chris G. Van de Walle. Free-carrier absorption in nitrides from first principles. Phys. Rev. B, 81:241201, Jun 2010.10.1103/PhysRevB.81.241201Search in Google Scholar

[71] Carlo Jacoboni. Theory of Electron Transport in Semiconductors. Springer Series in Solid-State Sciences. Springer-Verlag Berlin Heidelberg, 2010.10.1007/978-3-642-10586-9Search in Google Scholar

[72] F. Chen and N. J. Tao. Electron transport in single molecules: From benzene to graphene. Accounts of Chemical Research, 42(3):429-438, 2009. PMID: 19253984.Search in Google Scholar

[73] R Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1(3):223-231, 1957.10.1147/rd.13.0223Search in Google Scholar

[74] A Nitzan and MA Ratner. Electron transport in molecular wire junctions. SCIENCE, 300(5624):1384-1389, MAY 30 2003.10.1126/science.1081572Search in Google Scholar PubMed

[75] The Boltzmann Equation and Its Applications. Applied Mathematical Sciences. Springer New York, 1988.Search in Google Scholar

[76] Carlo Jacoboni and Lino Reggiani. The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55:645-705, Jul 1983.10.1103/RevModPhys.55.645Search in Google Scholar

[77] Gregory V. Hartland. Optical studies of dynamics in noble metal nanostructures. Chemical Reviews, 111(6):3858-3887, 06 2011.10.1021/cr1002547Search in Google Scholar PubMed

[78] Hayk Harutyunyan, Alex B. F. Martinson, Daniel Rosenmann, Larousse Khosravi Khorashad, Lucas V. Besteiro, Alexander O. Govorov, and Gary P. Wiederrecht. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat Nano, 10(9):770-774, 09 2015.10.1038/nnano.2015.165Search in Google Scholar PubMed

[79] Florian Ladstädter, Ulrich Hohenester, Peter Puschnig, and Claudia Ambrosch-Draxl. First-principles calculation of hotelectron scattering in metals. Phys. Rev. B, 70:235125, Dec 2004.10.1103/PhysRevB.70.235125Search in Google Scholar

[80] Zhibin Lin, Leonid V. Zhigilei, and Vittorio Celli. Electronphonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B, 77:075133, Feb 2008.10.1103/PhysRevB.77.075133Search in Google Scholar

[81] A. Brown, R. Sundararaman, P. Narang, W. A. Goddard III, and H. A. Atwater. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. preprint: arXiv:1602.00625Search in Google Scholar

[82] Ashutosh Giri, John T. Gaskins, Brian M. Foley, Ramez Cheaito, and Patrick E. Hopkins. Experimental evidence of excited electron number density and temperature effects on electron-phonon coupling in gold films. Journal of Applied Physics, 117(4):-, 2015.10.1063/1.4906553Search in Google Scholar

[83] N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B, 61:16956-16966, Jun 2000.10.1103/PhysRevB.61.16956Search in Google Scholar

[84] E. Carpene. Ultrafast laser irradiation of metals: Beyond the two-temperature model. Phys. Rev. B, 74:024301, Jul 2006.10.1103/PhysRevB.74.024301Search in Google Scholar

[85] Talin Avanesian and Phillip Christopher. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. The Journal of Physical Chemistry C, 118(48):28017-28031, 2014. 10.1021/jp509555mSearch in Google Scholar

[86] Hamidreza Chalabi, David Schoen, and Mark L. Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Letters, 14(3):1374-1380, 2014. PMID: 24502677.10.1021/nl4044373Search in Google Scholar PubMed

[87] A. J. Leenheer, P. Narang, N. S. Lewis, and H. A. Atwater. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: efficiency estimates. J. Appl. Phys., 115:134301, 2014.Search in Google Scholar

[88] K. Wu, J. Chen, J. R. McBride, and T. Lian. Efficient hotelectron transfer by a plasmon-induced interfacial chargetransfer transition. Science, 349(6248):632-635, 08 2015.10.1126/science.aac5443Search in Google Scholar PubMed

[89] Suljo Linic, Umar Aslam, Calvin Boerigter, and Matthew Morabito. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater, 14(6):567-576, 06 2015.10.1038/nmat4281Search in Google Scholar PubMed

[90] R. H. Fowler. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Physical Review, 38(1):45-56, 07 1931.10.1103/PhysRev.38.45Search in Google Scholar

[91] V. L. Dalal. Simple model for internal photoemission. J. Appl. Phys., 42:2274-2279, 1971.10.1063/1.1660536Search in Google Scholar

[92] Mark W. Knight, Heidar Sobhani, Peter Nordlander, and Naomi J. Halas. Photodetection with active optical antennas. Science, 332(6030):702-704, 05 2011.10.1126/science.1203056Search in Google Scholar PubMed

[93] Mark W. Knight, Yumin Wang, Alexander S. Urban, Ali Sobhani, Bob Y. Zheng, Peter Nordlander, and Naomi J. Halas. Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Letters, 13(4):1687-1692, 2013/07/23 2013.10.1021/nl400196zSearch in Google Scholar PubMed

[94] D. Peters. An infrared detector utilizing internal photoemission. Proc. IEEE, 55:704-705, 1967.10.1109/PROC.1967.5648Search in Google Scholar

[95] A Sobhani. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Commun., 4:1643, 2013.10.1038/ncomms2642Search in Google Scholar PubMed

[96] D. G. Busch and W. Ho. Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry. Phys. Rev. Lett., 77:1338-1341, 1996.10.1103/PhysRevLett.77.1338Search in Google Scholar PubMed

[97] Dietrich Menzel and Robert Gomer. Desorption from metal surfaces by low-energy electrons. The Journal of Chemical Physics, 41(11):3311-3328, 1964.10.1063/1.1725730Search in Google Scholar

[98] D. N. Denzler, C. Frischkorn, C. Hess, M. Wolf, and G. Ertl. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett., 91:226102, 2003.10.1103/PhysRevLett.91.226102Search in Google Scholar PubMed

[99] R. A. Wolkow and M. Moskovits. Enhanced photochemistry on silver surfaces. J. Chem. Phys., 87:5858-5869, 1987.10.1063/1.453508Search in Google Scholar

[100] S. Mubeen. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnol, 8:247-251, 2013.10.1038/nnano.2013.18Search in Google Scholar PubMed

[101] S. Linic, P. Christopher, and D. B. Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater., 10:911-921, 2011.10.1038/nmat3151Search in Google Scholar

[102] W. J. Youngblood. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc., 131:926-927, 2009.10.1021/ja809108ySearch in Google Scholar

[103] X. Zhang. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled förster resonance energy transfer. ACS Nano, 8:1273-1283, 2014.10.1021/nn406530mSearch in Google Scholar

[104] Takashi Fuse, Toshiaki Fujino, Jeong-Tak Ryu, Mitsuhiro Katayama, and Kenjiro Oura. Electron-stimulated desorption of hydrogen from h/si(001)-1×1 surface studied by time of-flight elastic recoil detection analysis. Surface Science, 420(1):81-86, 1 1999.10.1016/S0039-6028(98)00827-9Search in Google Scholar

[105] J. W. Gadzuk, L. J. Richter, S. A. Buntin, D. S. King, and R. R. Cavanagh model applied to no/pt(111). Surf.Sci., 235:317-333, 199010.1016/0039-6028(90)90807-KSearch in Google Scholar

[106] J. W. Gadzuk. Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption. Chem. Phys., 251:87-97, 2000.Search in Google Scholar

[107] J-P Gauyacq, A G Borisov, and A K Kazansky. Theoretical study of excited electronic states at surfaces, link with photo-emission and photo-desorption experiments. Journal of Physics: Conference Series, 133(1):012009, 2008.10.1088/1742-6596/133/1/012009Search in Google Scholar

[108] S. R. Hatch, X-Y. Zhu, J. M. White, and A. Campion. Photoinduced pathways to dissociation and desorption of dioxygen on ag(110) and pt(111). J. Phys Chem., 95:1759-1768, 1991.10.1021/j100157a051Search in Google Scholar

[109] K. Fukutani and Y. Murata. Photoexcited processes at metal and alloy surfaces: electronic structure and adsorption site. Surface Science, 390(1-3):164-173, 11 1997.10.1016/S0039-6028(97)00545-1Search in Google Scholar

[110] P. Avouris and R. E. Walkup. Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces. Annu. Rev. Phys. Chem., 40:173-206, 1989.10.1146/annurev.pc.40.100189.001133Search in Google Scholar

[111] M. Bonn. Phonon- versus electron-mediated desorption and oxidation of co on ru(0001). Science, 285:1042-1045, 1999.10.1126/science.285.5430.1042Search in Google Scholar PubMed

[112] W. D. Mieher and W. Ho. Bimolecular surface photochemistry: mechanisms of co oxidation on pt(111) at 85 k. J. Chem. Phys., 99:9279-9295, 1993.Search in Google Scholar

[113] J. A. Misewich, S. Nakabayashi, P. Weigand, M. Wolf, and T. F. Heinz. Anomalous branching ratio in the femtosecond surface chemistry of o2pd(111). Surface Science, 363(1-3):204-213, 8 1996.10.1016/0039-6028(96)00138-0Search in Google Scholar

[114] J. A. Prybyla, T. F. Heinz, J. A. Misewich, M. M. T. Loy, and J. H. Glownia. Desorption induced by femtosecond laser pulses. Phys. Rev. Lett., 64:1537-1540, 1990.10.1103/PhysRevLett.64.1537Search in Google Scholar PubMed

[115] W. Ho. Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons and heating. J. Phys. Chem., 100:13050-13060, 1996.10.1021/jp9535497Search in Google Scholar

[116] P. Christopher, H. Xin, A. Marimuthu, and S. Linic. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Mater., 11:1044-1050, 2012.10.1038/nmat3454Search in Google Scholar PubMed

[117] T. Olsen, J. Gavnholt, and J. Schiotz. Hot-electron-mediated desorption rates calculated from excited state potential energy surfaces. Phys. Rev. B, 79:035403, 2009.10.1103/PhysRevB.79.035403Search in Google Scholar

[118] T. Olsen and J. Schiotz. Origin of power laws for reactions at metal surfaces mediated by hot electrons. Phys. Rev. Lett., 103:238301, 2009.10.1103/PhysRevLett.103.238301Search in Google Scholar PubMed

[119] J. Gavnholt, A. Rubio, T. Olsen, K. Thygesen, and J. Schiotz. Hot-electron-assisted femtochemistry at surfaces: A timedependent density functional theory approach. Phys. Rev. B, 79:195405, 2009.Search in Google Scholar

[120] Peter Elliott and Neepa T. Maitra. Propagation of initially excited states in time-dependent density-functional theory. Phys. Rev. A, 85:052510, May 2012.10.1103/PhysRevA.85.052510Search in Google Scholar

[121] Hideyuki Inouye, Koichiro Tanaka, Ichiro Tanahashi, and Kazuyuki Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 57:11334-11340, May 1998. 10.1103/PhysRevB.57.11334Search in Google Scholar

[122] G. Baffou, R. Quidant, and C. Girard. Heat generation in plasmonic nanostructures: Influence of morphology. Appl. Phys. Lett., 94:153109, 2009.Search in Google Scholar

[123] G. Baffou, R. Quidant, and F. J. Garcia de Abajo. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano, 4:709-716, 2010.10.1021/nn901144dSearch in Google Scholar PubMed

[124] D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit. Photothermal imaging of nanometer-sized metal particles among scatterers. Science, 297:1160-1163, 2002.10.1126/science.1073765Search in Google Scholar PubMed

[125] Hrvoje Petek, Miles J. Weida, Hisashi Nagano, and Susumu Ogawa. Real-time observation of adsorbate atom motion above a metal surface. Science, 288(5470):1402-1404, 2000.10.1126/science.288.5470.1402Search in Google Scholar PubMed

[126] Hrvoje Petek. Photoexcitation of adsorbates on metal surfaces: One-step or three-step. The Journal of Chemical Physics, 137(9), 2012.10.1063/1.4746801Search in Google Scholar PubMed

[127] Matthew J. Kale, Talin Avanesian, Hongliang Xin, Jun Yan, and Phillip Christopher. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Letters, 14(9):5405-5412, 09 2014.10.1021/nl502571bSearch in Google Scholar PubMed

[128] Run Long and Oleg V Prezhdo. Instantaneous generation of charge-separated state on tio2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 136(11):4343-4354, 03 2014. 10.1021/ja5001592Search in Google Scholar PubMed

Received: 2015-10-22
Accepted: 2016-1-14
Published Online: 2016-6-11
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 28.2.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0007/html
Scroll to top button