Abstract
Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.
References
[1] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams. Microresonator-Based Optical Frequency Combs. Science, 332(6029):555-559, April 2011.10.1126/science.1193968Search in Google Scholar PubMed
[2] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg. Octave Spanning Tunable Frequency Comb from a Microresonator. Physical Review Letters, 107(6), August 2011.10.1103/PhysRevLett.107.063901Search in Google Scholar PubMed
[3] Yoshitomo Okawachi, Kasturi Saha, Jacob S. Levy, Y. Henry Wen, Michal Lipson, and Alexander L. Gaeta. Octave-spanning frequency comb generation in a silicon nitride chip. Optics letters, 36(17):3398-3400, 2011.10.1364/OL.36.003398Search in Google Scholar PubMed
[4] Theodor Hänsch. Nobel Lecture: Passion for precision. Reviews of Modern Physics, 78(4):1297-1309, November 2006.10.1103/RevModPhys.78.1297Search in Google Scholar
[5] Scott B. Papp, Katja Beha, Pascal Del’Haye, Franklyn Quinlan, Hansuek Lee, Kerry J. Vahala, and Scott A. Diddams. Microresonator frequency comb optical clock. Optica, 1(1):10, July 2014.10.1364/OPTICA.1.000010Search in Google Scholar
[6] J. D. Jost, T. Herr, C. Lecaplain, V. Brasch, M. H. P. Pfeiffer, and T. J. Kippenberg. “Counting the cycles of light using a selfreferenced optical microresonator,” Optica, 2(8):706, August 2015.10.1364/OPTICA.2.000706Search in Google Scholar
[7] Andrey Matsko, Anatoliy Savchenkov, Dmitry Strekalov, Vladimir Ilchenko, and Lute Maleki. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion. Physical Review A, 71(3), March 2005.10.1103/PhysRevA.71.033804Search in Google Scholar
[8] Yanne K. Chembo and Nan Yu. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Physical Review A, 82(3), September 2010.10.1103/PhysRevA.82.033801Search in Google Scholar
[9] Mark Oxborrow. Traceable 2-D Finite-Element Simulation of the Whispering-Gallery Modes of Axisymmetric Electromagnetic Resonators. IEEE Transactions on Microwave Theory and Techniques, 55(6):1209-1218, June 2007.10.1109/TMTT.2007.897850Search in Google Scholar
[10] Michael L. Gorodetsky and Aleksey E. Fomin. Geometrical theory of whispering-gallery modes. Selected Topics in Quantum Electronics, IEEE Journal of, 12(1):33-39, 2006.10.1109/JSTQE.2005.862954Search in Google Scholar
[11] T. Hansson, D. Modotto, and S. Wabnitz. Analytical approach to the design of microring resonators for nonlinear four-wave mixing applications. Journal of the Optical Society of America B, 31(5):1109, May 2014.10.1364/JOSAB.31.001109Search in Google Scholar
[12] Yoshitomo Okawachi, Michael R. E. Lamont, Kevin Luke, Daniel O. Carvalho, Mengjie Yu, Michal Lipson, and Alexander L. Gaeta. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Optics Letters, 39(12):3535, June 2014.10.1364/OL.39.003535Search in Google Scholar
[13] Andrey B. Matsko and Vladimir S. Ilchenko. Optical resonators with whispering-gallery modes-part I: basics. Selected Topics in Quantum Electronics, IEEE Journal of, 12(1):3-14, 2006.Search in Google Scholar
[14] Kensuke Ikeda. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Optics Communications, 30(2):257 - 261, 1979.10.1016/0030-4018(79)90090-7Search in Google Scholar
[15] M. Haelterman, S. Trillo, and S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. Optics Communications, 91(5-6):401-407, 1992.10.1016/0030-4018(92)90367-ZSearch in Google Scholar
[16] Stéphane Coen, Hamish G. Randle, Thibaut Sylvestre, and Miro Erkintalo. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Optics letters, 38(1):37-39, 2013.10.1364/OL.38.000037Search in Google Scholar PubMed
[17] Matteo Conforti, Arnaud Mussot, Alexandre Kudlinski, and Stefano Trillo. Modulational instability in dispersion oscillating fiber ring cavities. Optics Letters, 39(14):4200, July 2014.10.1364/OL.39.004200Search in Google Scholar PubMed
[18] D. J. Kaup and A. C. Newell. Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates. Physical Review B, 18(10):5162, 1978.10.1103/PhysRevB.18.5162Search in Google Scholar
[19] L. A. Lugiato and R. Lefever. Spatial dissipative structures in passive optical systems. Physical Review Letters, 58:2209-2211, May 1987.10.1103/PhysRevLett.58.2209Search in Google Scholar PubMed
[20] A.B. Matsko, A.A. Savchenkov, W. Liang, V.S. Ilchenko, D. Seidel, and L. Maleki. Mode-locked Kerr frequency combs. Optics Letters, 36(15):2845-2847, 2011.10.1364/OL.36.002845Search in Google Scholar PubMed
[21] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 6(7):480-487, June 2012.10.1038/nphoton.2012.127Search in Google Scholar
[22] A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki. Kerr frequency comb generation in overmoded resonators. Optics express, 20(24):27290-27298, 2012.10.1364/OE.20.027290Search in Google Scholar PubMed
[23] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg. Mode Spectrum and Temporal Soliton Formation in Optical Microresonators. Physical Review Letters, 113(12), September 2014.10.1103/PhysRevLett.113.123901Search in Google Scholar PubMed
[24] Yang Liu, Yi Xuan, Xiaoxiao Xue, Pei-Hsun Wang, Steven Chen, Andrew J. Metcalf, Jian Wang, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1(3):137, September 2014.10.1364/OPTICA.1.000137Search in Google Scholar
[25] Yanne K. Chembo and Curtis R. Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Physical Review A, 87(5), May 2013.10.1103/PhysRevA.87.053852Search in Google Scholar
[26] G.P. Agrawal. Nonlinear fiber optics, 5th Ed. Academic Press, New York, 2012.Search in Google Scholar
[27] T. Hansson, D. Modotto, and S. Wabnitz. On the numerical simulation of Kerr frequency combs using coupled mode equations. Optics Communications, 312:134-136, February 2014.10.1016/j.optcom.2013.09.017Search in Google Scholar
[28] C. Milián and D.V. Skryabin. Soliton families and resonant radiation in a micro-ring resonator near zero group-velocity dispersion. Optics Express, 22(3):3732, February 2014.10.1364/OE.22.003732Search in Google Scholar PubMed
[29] Michael R. E. Lamont, Yoshitomo Okawachi, and Alexander L. Gaeta. Route to stabilized ultrabroadband microresonatorbased frequency combs. Optics Letters, 38(18):3478, September 2013.10.1364/OL.38.003478Search in Google Scholar PubMed
[30] Changjing Bao, Lin Zhang, Andrey Matsko, Yan Yan, Zhe Zhao, Guodong Xie, Anuradha M. Agarwal, Lionel C. Kimerling, Jurgen Michel, Lute Maleki, and Alan E. Willner. Nonlinear conversion eflciency in Kerr frequency comb generation. Optics Letters, 39(21):6126, November 2014.10.1364/OL.39.006126Search in Google Scholar PubMed
[31] Maxim Karpov, Hairun Guo, Arne Kordts, Victor Brasch, Martin Pfeiffer, Michail Zervas, Michael Geiselmann, and Tobias J. Kippenberg. Raman induced soliton self-frequency shift in microresonator Kerr frequency combs. arXiv preprint arXiv:1506.08767, 2015.Search in Google Scholar
[32] R. Boyd. Nonlinear optics. Third Ed., Academic Press, 2008.Search in Google Scholar
[33] Austin G. Griflth, Ryan K.W. Lau, Jaime Cardenas, Yoshitomo Okawachi, Aseema Mohanty, Romy Fain, Yoon Ho Daniel Lee, Mengjie Yu, Christopher T. Phare, Carl B. Poitras, Alexander L. Gaeta, and Michal Lipson. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6:6299, February 2015.10.1038/ncomms7299Search in Google Scholar PubMed
[34] Albert Schliesser, Nathalie Picqué, and Theodor W. Hänsch. Mid-infrared frequency combs. Nature Photonics, 6(7):440-449, 2012.10.1038/nphoton.2012.142Search in Google Scholar
[35] Lin Zhang, Anuradha M. Agarwal, Lionel C. Kimerling, and Jurgen Michel. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3(4-5):247-268, 2013.Search in Google Scholar
[36] Lianghong Yin and Govind P. Agrawal. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Optics letters, 32(14):2031-2033, 2007.10.1364/OL.32.002031Search in Google Scholar PubMed
[37] Q. Lin, O. J. Painter, and G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Optics Express, 15:16604, 2007.Search in Google Scholar
[38] Tobias Hansson, Daniele Modotto, and Stefan Wabnitz. Midinfrared soliton and Raman frequency comb generation in silicon microrings. Optics Letters, 39(23):6747, December 2014.10.1364/OL.39.006747Search in Google Scholar PubMed
[39] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg. Temporal solitons in optical microresonators. Nature Photonics, 8(2):145-152, December 2013.10.1038/nphoton.2013.343Search in Google Scholar
[40] Kathy Luo, Jae K. Jang, Stéphane Coen, Stuart G. Murdoch, and Miro Erkintalo. Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator. Optics Letters, 40(16):3735, August 2015. 10.1364/OL.40.003735Search in Google Scholar PubMed
[41] Ryan K. W. Lau, Michael R. E. Lamont, Yoshitomo Okawachi, and Alexander L. Gaeta. Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Optics Letters, 40(12):2778, June 2015.10.1364/OL.40.002778Search in Google Scholar PubMed
[42] T. Hansson, D. Modotto, and S. Wabnitz. Dynamics of the modulational instability in microresonator frequency combs. Physical Review A, 88(2), August 2013.10.1103/PhysRevA.88.023819Search in Google Scholar
[43] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki. Hard and soft excitation regimes of Kerr frequency combs. Physical Review A, 85(2), February 2012.10.1103/PhysRevA.85.023830Search in Google Scholar
[44] A. B. Matsko, A. A. Savchenkov, and L. Maleki. Normal groupvelocity dispersion Kerr frequency comb. Optics Letters, 37(1):43-45, 2012.10.1364/OL.37.000043Search in Google Scholar PubMed
[45] J. A. Jaramillo-Villegas, X. Xue, P.-H. Wang, D. E. Leaird, and A. M. Weiner. “Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region.” Optics Express, 23(8):9618, April 2015.10.1364/OE.23.009618Search in Google Scholar PubMed
[46] Tobias Hansson and Stefan Wabnitz. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons. Journal of the Optical Society of America B, 32(7):1259, July 2015.10.1364/JOSAB.32.001259Search in Google Scholar
[47] S. Trillo and Stefan Wabnitz. Dynamics of the nonlinear modulational instability in optical fibers. Optics letters, 16(13):986-988, 1991.10.1364/OL.16.000986Search in Google Scholar PubMed
[48] Marc Haelterman, S. Trillo, and S. Wabnitz. Additivemodulation- instability ring laser in the normal dispersion regime of a fiber. Optics letters, 17(10):745-747, 1992.10.1364/OL.17.000745Search in Google Scholar PubMed
[49] Stéphane Coen and Marc Haelterman. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Physical review letters, 79(21):4139, 1997.10.1103/PhysRevLett.79.4139Search in Google Scholar
[50] Aurelien Coillet, Irina Balakireva, Remi Henriet, Khaldoun Saleh, Laurent Larger, John M. Dudley, Curtis R. Menyuk, and Yanne K. Chembo. Azimuthal Turing Patterns, Bright and Dark Cavity Solitons in Kerr Combs Generated With Whispering-Gallery-Mode Resonators. IEEE Photonics Journal, 5(4):6100409, August 2013.10.1109/JPHOT.2013.2277882Search in Google Scholar
[51] D. W. McLaughlin, J. V. Moloney, and A. C. Newell. New class of instabilities in passive optical cavities. Physical review letters, 54(7):681, 1985.10.1103/PhysRevLett.54.681Search in Google Scholar PubMed
[52] P. Parra-Rivas, D. Gomila, M. A. Matías, S. Coen, and L. Gelens. Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs. Physical Review A, 89(4), April 2014.10.1103/PhysRevA.89.043813Search in Google Scholar
[53] K. Ikeda, H. Daido, and O. Akimoto. Optical turbulence - Chaotic behavior of transmitted light from a ring cavity. Physical Review Letters, 45:709-712, September 1980.10.1103/PhysRevLett.45.709Search in Google Scholar
[54] François Leo, Stéphane Coen, Pascal Kockaert, Simon-Pierre Gorza, Philippe Emplit, and Marc Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photonics, 4(7):471-476, May 2010.10.1038/nphoton.2010.120Search in Google Scholar
[55] D. W. Mc Laughlin, J. V. Moloney, and A. C. Newell. Solitary waves as fixed points of infinite-dimensional maps in an optical bistable ring cavity. Physical review letters, 51(2):75, 1983.10.1103/PhysRevLett.51.75Search in Google Scholar
[56] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg. “Photonic chipbased optical frequency comb using soliton Cherenkov radiation.” Science, 351(6271):357-360, January 2016.10.1126/science.aad4811Search in Google Scholar PubMed
[57] Stefan Wabnitz. Suppression of interactions in a phase-locked soliton optical memory. Optics letters, 18(8):601-603, 1993.10.1364/OL.18.000601Search in Google Scholar
[58] Stéphane Coen and Miro Erkintalo. Universal scaling laws of Kerr frequency combs. Optics Letters, 38(11):1790, June 2013.10.1364/OL.38.001790Search in Google Scholar PubMed
[59] Tobias Herr, Michael L. Gorodetsky, and Tobias J. Kippenberg. Dissipative Kerr solitons in optical microresonators. arXiv preprint arXiv:1508.04989, 2015.Search in Google Scholar
[60] François Leo, Lendert Gelens, Philippe Emplit, Marc Haelterman, and Stéphane Coen. Dynamics of one-dimensional Kerr cavity solitons. Optics Express, 21(7):9180, April 2013.10.1364/OE.21.009180Search in Google Scholar PubMed
[61] Jae K. Jang, Miro Erkintalo, Stuart G. Murdoch, and Stéphane Coen. Observation of dispersive wave emission by temporal cavity solitons. Optics Letters, 39(19):5503, October 2014.10.1364/OL.39.005503Search in Google Scholar PubMed
[62] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 4:1345, January 2013.10.1038/ncomms2335Search in Google Scholar PubMed PubMed Central
[63] Iolanda Ricciardi, Simona Mosca, Maria Parisi, Pasquale Maddaloni, Luigi Santamaria, Paolo De Natale, and Maurizio De Rosa. Frequency comb generation in quadratic nonlinear media. Physical Review A, 91(6), June 2015.10.1103/PhysRevA.91.063839Search in Google Scholar
[64] F. Leo, T. Hansson, I. Ricciardi, M. De Rosa, S. Coen, S. Wabnitz, and M. Erkintalo. “Walk-Off-Induced Modulation Instability, Temporal Pattern Formation, and Frequency Comb Generation in Cavity-Enhanced Second-Harmonic Generation.” Physical Review Letters, 116(3):033901, January 2016.10.1103/PhysRevLett.116.033901Search in Google Scholar PubMed
© 2016
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.