Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Kerr optical frequency combs: theory, applications and perspectives

Yanne K. Chembo EMAIL logo
From the journal Nanophotonics

Abstract

The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.

References

[1] Matsko A. B., Ilchenko V. S., Optical resonators with whispering gallery modes I: Basics, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3.Search in Google Scholar

[2] Ilchenko V. S., Matsko A. B., Optical Resonators With Whispering-Gallery Modes-Part II: Applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15.Search in Google Scholar

[3] Chiasera A., Dumeige Y., Féron P., Ferrari M., Jestin Y., Nunzi Conti G., Pelli S., Soria S., Righini G. C., Spherical whisperinggallery- mode microresonators, Laser Photon. Rev. 2010, 51, 457.Search in Google Scholar

[4] Kippenberg T. J., Spillane S. M., Vahala K. J., Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity, Phys. Rev. Lett. 2004, 93, 083904.Search in Google Scholar

[5] Savchenkov A. A., Matsko A. B., Strekalov D., Mohageg M., Ilchenko V. S.,Maleki L., Low Threshold Optical Oscillations in a WhisperingGallery ModeCaF2 Resonator, Phys. Rev. Lett. 2004, 93, 243905.Search in Google Scholar

[6] Del’Haye P., Schliesser A., Arcizet A., Holzwarth R., Kippenberg T. J., Optical frequency comb generation from a monolithic microresonator, Nature 2007, 450, 1214.10.1038/nature06401Search in Google Scholar PubMed

[7] Kippenberg T. J., Holzwarth R., Diddams S. A., Microresonator- Based Optical Frequency Combs, Science 2011, 322, 555.10.1126/science.1193968Search in Google Scholar PubMed

[8] Chembo Y. K., Strekalov D. V., Yu N., Spectrum and Dynamics of Optical Frequency Combs Generated with Monolithic Whispering Gallery Mode Resonators, Phys. Rev. Lett. 2010, 104, 103902.Search in Google Scholar

[9] Chembo Y. K., Yu N., Modal expansion approach to opticalfrequency- comb generation with monolithic whisperinggallery- mode resonators, Phys. Rev. A 2010, 82, 033801.10.1103/PhysRevA.82.033801Search in Google Scholar

[10] Chembo Y. K., Yu N., On the generation of octave-spanning optical frequency combs using monolithic whispering-gallery-mode microresonators, Opt. Lett. 2010, 35, 2696.Search in Google Scholar

[11] Matsko A. B., Savchenkov A. A., Maleki L., Normal groupvelocity dispersion Kerr frequency comb, Opt. Lett. 2012, 37, 43.Search in Google Scholar

[12] Agha I. H., Okawachi Y., Gaeta A. L., Opt. Express 2009, 17, 16209.10.1364/OE.17.016209Search in Google Scholar PubMed

[13] Matsko A. B., Savchenkov A. A., Liang W., Ilchenko V. S., Seidel D., Maleki L., Mode-locked Kerr frequency combs, Opt. Lett. 2011, 36, 2845.Search in Google Scholar

[14] Chembo Y. K., Menyuk C. R., Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators, Phys. Rev. A 2013, 87, 053852.10.1103/PhysRevA.87.053852Search in Google Scholar

[15] Coen S., Randle H. G., Sylvestre T., Erkintalo M., Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model, Opt. Lett. 2013, 38, 37.Search in Google Scholar

[16] Lugiato L. A., Lefever R., Spatial Dissipative Structures in Passive Optical Systems, Phys. Rev. Lett. 1987, 58, 2209.Search in Google Scholar

[17] Coillet A., Balakireva I., Henriet R., Saleh K., Larger L., Dudley J. M., Menyuk C. R., Chembo Y. K., Azimuthal Turing Patterns, Bright and Dark Cavity Solitons in Kerr Combs generated with Whispering-Gallery Mode Resonators, IEEE Photonics Journal 2013, 5, 6100409.10.1109/JPHOT.2013.2277882Search in Google Scholar

[18] Godey C., Balakireva I. V., Coillet A., Chembo Y. K., Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes, Phys. Rev. A. 2014, 89, 063814.Search in Google Scholar

[19] Parra-Rivas P., Gomila D., Matias M. A., Coen S., Gelens L., Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs, Phys. Rev. A. 2014, 89, 043813.Search in Google Scholar

[20] Levy J. S., Gondarenko A., Foster M. A., Turner-Foster A. C.,Gaeta A. L., Lipson M.,CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects, Nature Photonics 2010, 4, 37.10.1038/nphoton.2009.259Search in Google Scholar

[21] Ferdous F., Miao H., Leaird D. E., Srinivasan K.,Wang J., Chen L., Varghese L. T., Weiner A. M., Spectral line-by-line pulse shaping of on-chip microresonator frequency combs, Nature Photonics 2011, 5, 770.10.1038/nphoton.2011.255Search in Google Scholar

[22] Moss D. J., Morandotti R., Gaeta A. L., Lipson M., New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics, Nature Photonics 2013, 7, 597.10.1038/nphoton.2013.183Search in Google Scholar

[23] Liang W., Eliyahu D., Ilchenko V. S., Savchenkov A. A., Matsko A. B., Seidel D., Maleki L., High spectral purity Kerr frequency comb radio frequency photonic oscillator, Nature Communications 2015, 6, 7957.10.1038/ncomms8957Search in Google Scholar PubMed PubMed Central

[24] Savchenkov A. A., Matsko A. B., Ilchenko V. S., Maleki L., Optical resonators with ten million finesse, Opt. Express 2007, 115, 6768.10.1364/OE.15.006768Search in Google Scholar

[25] Grudinin I. S., Yu N., Maleki L., Generation of optical frequency combs with a CaF2 resonator, Opt. Lett. 2009, 34, 878-880.Search in Google Scholar

[26] Sprenger B., Schwefel H. G. L., Lu Z. H., Svitlov S., Wang, L. J., CaF2 whispering-gallery-mode-resonator stabilized-narrowlinewidth laser, Opt. Lett. 2010, 35, 2870-287210.1364/OL.35.002870Search in Google Scholar PubMed

[27] Tavernier H., Salzenstein P., Volyanskiy K., Chembo Y. K., Larger L., Magnesium Fluoride Whispering Gallery Mode Disk- Resonators for Microwave Photonics Applications, IEEE Phot. Tech. Lett. 2010, 22, 1629-1631.Search in Google Scholar

[28] Liang W., Savchenkov A. A., Matsko A. B., Ilchenko V. S., Seidel D.,Maleki L., Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator, Opt. Lett. 2011, 36, 2290.Search in Google Scholar

[29] Henriet R., Coillet A., Saleh K., Larger L., Chembo Y. K., Barium fluoride and lithium fluoride whispering-gallery mode resonators for photonics applications, Opt. Eng. 2014, 53, 071821.Search in Google Scholar

[30] Lin G., Diallo S., Henriet R., Jacquot M., Chembo Y. K., Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor, Opt. Lett. 2014, 39, 6009.Search in Google Scholar

[31] Henriet R., Lin G., Coillet A., Jacquot M., Furfaro L., Larger L., Chembo Y. K. Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor, Opt. Lett. 2015, 40, 1567.Search in Google Scholar

[32] Volyanskiy K., Salzenstein P., Tavernier H., Pogurmirskiy M., Chembo Y. K., Larger L., Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode diskresonators and phase modulation, Opt. Express. 2010, 18, 22358-22363.Search in Google Scholar

[33] Papp S. B., Diddams S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 2011, 84, 053833.10.1103/PhysRevA.84.053833Search in Google Scholar

[34] Ilchenko V. S., Savchenkov A. A., Byrd J., Solomatine I., Matsko A. B., Seidel D., Maleki L., Crystal quartz optical whisperinggallery resonators, Opt. Lett. 2008, 33, 1569-1571.Search in Google Scholar

[35] Hausmann B. J. M., Bulu I., Venkataraman V., Deotare P., Loncar M., Diamond nonlinear photonics, Nature Photonics 2014, 8, 369-374.10.1038/nphoton.2014.72Search in Google Scholar

[36] Coillet A., Henriet R., Huy K. P., Jacquot M., Furfaro L., Balakireva I., Larger L., Chembo Y. K., Microwave Photonics Systems Based on Whispering-gallery-mode Resonators, J. Vis. Exp. 2013, 78, e50423.Search in Google Scholar

[37] Papp S. B., Del’Haye P., Diddams S. A., Mechanical Control of a Microrod-Resonator Optical Frequency Comb, Phys. Rev. X. 2013, 3, 031003.Search in Google Scholar

[38] Maleki L., The optoelectronic oscillator, Nature Photonics 2011, 5, 728.10.1038/nphoton.2011.293Search in Google Scholar

[39] Dumeige Y., Trebaol S., Ghisa L., Nguyen T. K. N., Tavernier H., Féron P., Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers, J. Opt. Soc. Am. B 2008, 25, 2073.10.1364/JOSAB.25.002073Search in Google Scholar

[40] Coillet A., Henriet R., Salzenstein P., Phan Huy K., Larger L., Chembo Y. K., Time-domain Dynamics and Stability Analysis of Optoelectronic Oscillators based on Whispering-Gallery Mode Resonators, IEEE J. Sel. Top. Quantum Electron. 2013, 19, 6000112.Search in Google Scholar

[41] Saleh K., Lin G., Chembo Y. K., Effect of Laser Coupling and Active Stabilization on the Phase Noise Performance of Optoelectronic Microwave Oscillators Based on Whispering-Gallery- Mode Resonators, IEEE Phot. J. 2015, 7, 5500111.Search in Google Scholar

[42] Saleh K., Henriet R., Diallo S., Lin G.,Martinenghi R., Balakireva I. V., Salzenstein P., Coillet A., Chembo Y. K., Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators, Opt. Express 2014, 22, 32158-3217310.1364/OE.22.032158Search in Google Scholar PubMed

[43] Agrawal G. P., Nonlinear Fiber Optics, Fifth Edition, Academic Press (2013).10.1016/B978-0-12-397023-7.00011-5Search in Google Scholar

[44] Haelterman M., Trillo S., Wabnitz S., Additive-modulationinstability ring laser in the normal dispersion regime of a fiber Opt. Lett. 1992, 17, 745.Search in Google Scholar

[45] Leo F., Coen S., Kockaert P., Gorza S.-P., Emplit P., Haelterman M., Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer, Nature Photonics 2010 4, 471.10.1038/nphoton.2010.120Search in Google Scholar

[46] Chembo Y. K., Quantum Dynamics of Kerr Optical Frequency Combs below and above Threshold: Spontaneous Four- Wave-Mixing, Entanglement and Squeezed States of Light, arXiv:1412.5700v2 [quant-ph], 2015.Search in Google Scholar

[47] Hansson T., Modotto D., Wabnitz S., Dynamics of the modulational instability in microresonator frequency combs, Phys. Rev. A 2013, 88, 023819.10.1103/PhysRevA.88.023819Search in Google Scholar

[48] Turing A. M., The Chemical Basis of Morphogenesis, Phil. Trans. of the R. Soc. Ser. B 1952, 237, 37.10.1098/rstb.1952.0012Search in Google Scholar

[49] Coillet A. and Chembo Y. K., On the robustness of phase locking in Kerr optical frequency combs, Opt. Lett. 2014, 39, 1529.Search in Google Scholar

[50] Lin G., Saleh K., Henriet R., Diallo S., Martinenghi R., Coillet A., Chembo Y. K., Wide-range tunability, thermal locking, and mode-crossing effects in Kerr optical frequency combs, Opt. Eng. 2014, 53, 122602.Search in Google Scholar

[51] Herr T., Brasch V., Jost J. D., Wang C. Y., Kondratiev N. M., Gorodetsky M. L., Kippenberg T. J., Temporal solitons in optical microresonators, Nature Photon. 2014, 8, 145.Search in Google Scholar

[52] Taheri H., Eftekhar A. A., Wiesenfeld K., Adibi A., Soliton Formation in Whispering-Gallery-Mode Resonators via Input Phase Modulation, IEEE Phot. J. 2015, 7, 2200309.Search in Google Scholar

[53] Lobanov V. E., Lihachev G., Kippenberg T. J., Gorodetsky M. L., Frequency combs and platicons in optical microresonators with normal GVD, Opt. Express 2015, 23, 7713. 10.1364/OE.23.007713Search in Google Scholar PubMed

[54] Matsko A. B., Liang W., Savchenkov A. A., Maleki L., Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators, Opt. Lett. 2013, 38, 525.Search in Google Scholar

[55] A. Coillet and Y. K. Chembo, Routes to spatiotemporal chaos in Kerr optical frequency combs, Chaos 24, 013313 (2014).10.1063/1.4863298Search in Google Scholar PubMed

[56] Coillet A., Dudley J., Genty G., Larger L., Chembo Y. K., Optical Rogue Waves in Whispering-Gallery-Mode Resonators, Phys. Rev. A 2014, 89, 013835.10.1103/PhysRevA.89.013835Search in Google Scholar

[57] Akhmediev N., Pelinovsky E., Editors, Rogue waves - Towards a unifying concept, Special issue of the Eur. Phys. J. Spe. Top., 2010.Search in Google Scholar

[58] Akhmediev N., Dudley J. M., Solli D. R., Turitsyn S. K., Recent progress in investigating optical rogue waves, J. Opt. 2013, 15, 060201.Search in Google Scholar

[59] Pfeifle J., Coillet A., Henriet R., Saleh K., Schindler P., Weimann C., Freude W., Balakireva I. V., Larger L., Koos C., Chembo Y. K., Optimally Coherent Kerr Combs Generatedwith Crystalline Whispering Gallery Mode Resonators for Ultrahigh Capacity Fiber Communications, Phys. Rev. Lett. 2015, 114, 093902.Search in Google Scholar

[60] Li J., Lee H., Chen T., Vahala K. J., Low-Pump-Power, Low-Phase- Noise, and Microwave to Millimeter-Wave Repetition Rate Operation in Microcombs, Phys. Rev. Lett. 2012, 109, 233901.Search in Google Scholar

[61] Savchenkov A. A., Eliyahu D., Liang W., Ilchenko V. S., Byrd J., Matsko A. B., Seidel D., Maleki L., Stabilization of a Kerr frequency comb oscillator, Opt. Lett. 2013, 38, 2636.Search in Google Scholar

[62] Del’Haye P., Papp S. B., Diddams S. A., Hybrid Electro-Optically Modulated Microcombs, Phys. Rev. Lett. 2012, 109, 263901.Search in Google Scholar

[63] Papp S. B., Beha K., Del’Haye P., Quinlan F., Lee H., Vahala K. J., Diddams S. A., Microresonator frequency comb optical clock, Optica 2014, 1, 10.10.1364/OPTICA.1.000010Search in Google Scholar

[64] Del’Haye P., Herr T., Gavartin E., Gorodetsky M.L., Holzwarth R., Kippenberg T.J., Octave Spanning Tunable Frequency Comb from a Microresonator, Phys. Rev. Lett. 2011, 107, 63901.Search in Google Scholar

[65] Okawachi Y., Saha K., Levy J. S., Wen Y. H., Lipson M.,Gaeta A. L., Octave-spanning frequency comb generation in a silicon nitride chip, Opt. Lett. 2011, 36, 3398.Search in Google Scholar

[66] Liang W., Savchenkov A. A., Xie Z., McMillan J. F., Burkhart J., Ilchenko V. S., Wong C. W., Matsko A. B., Maleki L., Miniature multioctave light source based on a monolithic microcavity, Optica 2015, 2, 40.10.1364/OPTICA.2.000040Search in Google Scholar

[67] Matsko A. B., Maleki L., Noise conversion in Kerr comb RF photonic oscillators, J. Opt. Soc. Am. B 2015, 32, 232.10.1364/JOSAB.32.000232Search in Google Scholar

[68] Wang P.-H., Ferdous F., Miao H.,Wang J., Leaird D. E., Srinivasan K., Chen L., Aksyuk V., Weiner A. M., Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs, Opt. Express 2012, 20, 29284.10.1364/OE.20.029284Search in Google Scholar PubMed

[69] Levy J., Saha K., Okawachi Y., Foster M., Gaeta A., Lipson M., High-performance silicon-nitride-based multiple-wavelength source, IEEE Phot. Tech. Lett. 2012, 24, 1375.Search in Google Scholar

[70] T. W. Hansch, Nobel Lecture: Passion for precision, Rev. Mod. Phys. 2006, 78, 1297.Search in Google Scholar

[71] Schliesser A., Picqué N., Hänsch T. W., Mid-infrared frequency combs, Nature Photonics 2012, 6, 440.10.1038/nphoton.2012.142Search in Google Scholar

[72] Savchenkov A. A., Matsko A. B., Liang W., Ilchenko V. S., Seidel D., Maleki L., Kerr combs with selectable central frequency, Nature Photonics 2011, 5, 293.10.1038/nphoton.2011.50Search in Google Scholar

[73] Savchenkov A. A., Ilchenko V. S., Di Teodoro F., Belden P. M., LotshawW. T.,Matsko A. B.,Maleki L., Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers, Opt. Lett 2015, 40, 3468.10.1364/OL.40.003468Search in Google Scholar PubMed

[74] Wang C. Y., Herr T., Del’Haye P., Schliesser A., Hofer J., Holzwarth R., Hänsch T. W., Picqué N., Kippenberg, T. J., Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators, Nature Communications 2013, 4, 1345.10.1038/ncomms2335Search in Google Scholar PubMed PubMed Central

[75] Griflth A. G., Lau R. K. W., Cardenas J., Okawachi Y., Mohanty A. , Fain R., Lee Y. H. D., Yu M., Phare C. T., Poitras C. B., Gaeta A. L., Lipson M., Silicon-chip mid-infrared frequency comb generation, Nature Communications 2015, 6, 6299.10.1038/ncomms7299Search in Google Scholar PubMed

[76] Lecaplain C., Javerzac-Galy C., Lucas E., Jost J. D., Kippenberg T. J., Quantum cascade laser Kerr frequency comb, arXiv:1506.00626, 2015.Search in Google Scholar

[77] Lin G., Chembo Y. K., On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range, Opt. Express 2015, 23, 1594-1604.10.1364/OE.23.001594Search in Google Scholar PubMed

[78] Sharping J. E., Lee K. F., Foster M. A., Turner A. C., Schmidt B. S., Lipson M., Gaeta A. L., Kumar P., Generation of correlated photons in nanoscale siliconwaveguides, Optics Express 2006, 14, 12388.10.1364/OE.14.012388Search in Google Scholar

[79] Clemmen S., Phan-Huy K., Bogaerts W., Baets R. G., Emplit Ph., Massar S., Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators, Opt. Express 2009, 17, 16558.10.1364/OE.17.016558Search in Google Scholar PubMed

[80] Helt L. G., Yang Z., Liscidini M., Sipe J. E., Spontaneous fourwave mixing in microring resonators, Opt. Lett. 2010, 35, 3006.Search in Google Scholar

[81] Chen J., Levine Z. H., Fan J., Migdall A. L., Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator microresonator, Opt. Express 2011, 19, 1470.10.1364/OE.19.001470Search in Google Scholar PubMed

[82] Azzini S., Grassani D., Strain M. J., Sorel M., Helt L. G., Sipe J. E., Liscidini M., Galli M., Bajoni D., Ultra-low power generation of twin photons in a compact silicon ring resonator, Opt. Express 2012, 20, 23100.10.1364/OE.20.023100Search in Google Scholar PubMed

[83] Helt L. G., Liscidini M., Sipe J. E., How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices, J. Opt. Soc. Am. 2012, 29, 2199.Search in Google Scholar

[84] Azzini S., Grassani D., Galli M., Andreani L. C., Sorel M., Strain M. J., Helt L. G., Sipe J. E., Liscidini M., Bajoni D., From classical four-wave mixing to parametric fluorescence in silicon microring resonators, Opt. Express 2012, 37, 3807.10.1364/OL.37.003807Search in Google Scholar PubMed

[85] Camacho R. M., Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators, Opt. Express 2012, 20, 21977.10.1364/OE.20.021977Search in Google Scholar PubMed

[86] Matsuda N., Le Jeannic H., Fukuda H., Tsuchizawa T., Munro W. J., Shimizu K., Yamada K., Tokura Y., Takesue H., A monolithically integrated polarization entangled photon pair source on a silicon chip, Sci. Rep. 2012, 2, 817.Search in Google Scholar

[87] Engin E., Bonneau D., Natarajan C. M., Clark A. S., Tanner M. G., Hadfield R. H., Dorenbos S. N., Zwiller V., Ohira K., Suzuki N., Yoshida H., Iizuka N., Ezaki M., O’Brien J. L., Thompson M. G., Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement, Opt. Express 2013, 21, 27826.10.1364/OE.21.027826Search in Google Scholar PubMed

[88] Reimer C., Caspani L., Clerici M., Ferrera M., Kues M., Peccianti M., Pasquazi A., Razzari L., Little B. E., Chu S. T., Moss D. J., Morandotti R., Integrated frequency comb source of heralded single photons, Opt. Express 2014, 22, 6535.10.1364/OE.22.006535Search in Google Scholar PubMed

[89] Vernon Z., Sipe J. E., Spontaneous four-wave mixing in lossy microring resonators, arXiv:1502.05900 [quant-ph], 2015.Search in Google Scholar

[90] Grassani D., Azzini S., Liscidini M., Galli M., Strain M. J., Sorel M., Sipe J. E., Bajoni D., Micrometer-scale integrated silicon source of time-energy entangled photons, Optica 2015, 2, 88. 10.1364/OPTICA.2.000088Search in Google Scholar

[91] Fabre C., Squeezed states of light, Phys. Rep. 1992, 19, 215.Search in Google Scholar

[92] Sanders B. C., Review of coherent entangled states, J. Phys. A: Math. Theor. 2012, 45, 244002.Search in Google Scholar

[93] Lugiato L. A., Castelli F., Quantum Noise Reduction in a Spatial Dissipative Structure, Phys. Rev. Lett., 1992, 68, 3284.Search in Google Scholar

[94] Dutt A., Luke K.,Manipatruni S., Gaeta A. L., Nussenzveig P., Lipson M., On-Chip Optical Squeezing, Phys. Rev. Applied 2015, 3, 044005.10.1103/PhysRevApplied.3.044005Search in Google Scholar

[95] Haragus M., Iooss G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Springer, 2010.10.1007/978-0-85729-112-7Search in Google Scholar

[96] Miyaji T., Ohnishi I., Tsutsumi Y., Bifurcation analysis to the Lugiato-Lefever equation in one space dimension, Physica D 2010, 239, 2066.10.1016/j.physd.2010.07.014Search in Google Scholar

[97] Kozyreff G., Localized Turing patterns in nonlinear optical cavities, Physica D 2012, 241, 936.10.1016/j.physd.2012.02.007Search in Google Scholar

[98] Herr T., Hartinger K., Riemensberger J., Wang C. Y., Gavartin E., Holzwarth R., Gorodetsky M. L., Kippenberg T. J., Universal formation dynamics and noise of Kerr-frequency combs in microresonators Nature Photonics, 2012, 6, 480.10.1038/nphoton.2012.127Search in Google Scholar

[99] Del’Haye P., Beha K., Papp S. B., Diddams S. A., Self-Injection Locking and Phase-Locked States in Microresonator-Based Optical Frequency Combs, Phys. Rev. Lett. 2014, 112, 043905.Search in Google Scholar

[100] Del’Haye P., Coillet A., Loh W., Beha K., Papp S. B., Diddams S. A., Phase steps and resonator detuning measurements in microresonator frequency combs, Nature Communications 2015, 6, 5668.10.1038/ncomms6668Search in Google Scholar PubMed

[101] Bao C., Zhang L., Matsko A., Nonlinear conversion eflciency in Kerr frequency comb generation, Opt. Lett. 2014, 39, 6126.Search in Google Scholar

[102] Chembo Y. K., Grudinin I. S., Yu N., Spatiotemporal dynamics of Kerr-Raman optical frequency combs, Phys. Rev. A 2015, 92, 043818.10.1103/PhysRevA.92.043818Search in Google Scholar

[103] Grudinin I. S., Yu N., Dispersion engineering of crystalline resonators via microstructuring, Optica 2015, 2, 221.10.1364/OPTICA.2.000221Search in Google Scholar

[104] Lin G., Diallo S., Saleh K., Martinenghi R., Beugnot J.-C., Sylvestre T., Chembo Y. K., Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators, Appl. Phys. Lett. 2014, 105, 231103.Search in Google Scholar

[105] Diallo S., Lin G., Chembo Y. K., Giant thermo-optical relaxation oscillations in millimeter-size whispering gallery mode disk resonators, Opt. Lett. 2015, 40, 3834.Search in Google Scholar

[106] Lin G., Martinenghi R., Diallo S., Saleh K., Coillet A., Chembo Y. K., Spectro-temporal dynamics of Kerr combs with parametric seeding Appl. Opt. 2015, 54, 2407.Search in Google Scholar

[107] Matsko A. B., Savchenkov A. A., Yu N., Maleki L., Whisperinggallery- mode resonators as frequency references. I. Fundamental limitations, J. Opt. Soc. Am. B 2007, 24, 1324.10.1364/JOSAB.24.001324Search in Google Scholar

[108] Savchenkov A. A.,Matsko A. B., Ilchenko V. S., Yu N.,Maleki L., Whispering-gallery-mode resonators as frequency references. II. Stabilization, J. Opt. Soc. Am. B 2007, 24, 2988.10.1364/JOSAB.24.002988Search in Google Scholar

Received: 2015-9-30
Accepted: 2016-1-4
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 27.1.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0013/html
Scroll Up Arrow