Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Normal-dispersion microresonator Kerr frequency combs

Xiaoxiao Xue EMAIL logo , Minghao Qi and Andrew M. Weiner
From the journal Nanophotonics

Abstract

Optical microresonator-based Kerr frequency comb generation has developed into a hot research area in the past decade. Microresonator combs are promising for portable applications due to their potential for chip-level integration and low power consumption. According to the group velocity dispersion of the microresonator employed, research in this field may be classified into two categories: the anomalous dispersion regime and the normal dispersion regime. In this paper, we discuss the physics of Kerr comb generation in the normal dispersion regime and review recent experimental advances. The potential advantages and future directions of normal dispersion combs are also discussed.

References

[1] Ye J, Cundiff ST. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. Boston, MA, USA, Springer, 2005.10.1007/b102450Search in Google Scholar

[2] Udem Th, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature 2002; 416:233-237.10.1038/416233aSearch in Google Scholar PubMed

[3] Ye J, Schnatz H, Hollberg LW. Optical frequency combs: from frequency metrology to optical phase control. J Sel Top Quantum Electron 2003; 9: 1041-1058.10.1109/JSTQE.2003.819109Search in Google Scholar

[4] Adler F, Thorpe MJ, Cossel KC, Ye J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 2010; 3: 175-205.Search in Google Scholar

[5] Fortier TM, Kirchner MS, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division. Nature Photon 2011; 5: 425-429.10.1038/nphoton.2011.121Search in Google Scholar

[6] Supradeepa VR, Long CM, Wu R. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nature Photon 2012; 6: 186-194.10.1038/nphoton.2011.350Search in Google Scholar

[7] Xue X, Xuan Y, Kim HJ, et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J Lightwave Technol 2014; 32: 3557-3565.10.1109/JLT.2014.2312359Search in Google Scholar

[8] LiangW, Eliyahu D, Ilchenko VS, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Commum 2015; 6: 7957.10.1038/ncomms8957Search in Google Scholar PubMed PubMed Central

[9] Hillerkuss D, Schmogrow R, Schellinger T, et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon 2011; 5: 364-371.10.1038/nphoton.2011.74Search in Google Scholar

[10] Hillerkuss D, Schmogrow R, Meyer M, et al. Single-laser 32.5 Tbit/s Nyquist WDM transmission. J Opt Commun Netw 2012; 4: 715-723.10.1364/JOCN.4.000715Search in Google Scholar

[11] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nature Photon 2014; 8: 375-380.10.1038/nphoton.2014.57Search in Google Scholar PubMed PubMed Central

[12] Fermann ME, Hartl I. Ultrafast fibre lasers. Nature Photon 2013; 7: 868-874.10.1038/nphoton.2013.280Search in Google Scholar

[13] Torres-Company V, Weiner AM. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photon Rev 2014; 8: 368-393.10.1002/lpor.201300126Search in Google Scholar

[14] Kippenberg TJ, Holzwarth R, Diddams SA. Microresonatorbased optical frequency combs. Science 2011; 332: 555-559.10.1126/science.1193968Search in Google Scholar PubMed

[15] Kippenberg TJ, Spillane SM, Vahala KJ. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys Rev Lett 2004; 93: 083904.10.1103/PhysRevLett.93.083904Search in Google Scholar PubMed

[16] Savchenkov AA,Matsko AB, Strekalov D,Mohageg M, Ilchenko VS,Maleki L. Lowthreshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys Rev Lett 2004; 93: 243905.10.1103/PhysRevLett.93.243905Search in Google Scholar PubMed

[17] Del’Haye P, Schliesser A, Arcizet O,Wilken T, Holzwarth R, Kippenberg TJ. Optical frequency comb generation from a monolithic microresonator. Nature 2007; 450: 1214-1217.10.1038/nature06401Search in Google Scholar PubMed

[18] Agha IH, Okawachi Y, Foster MA, Sharping JE, Gaeta AL. Four-wave-mixing parametric oscillations in dispersioncompensated high-Q silica microspheres. Phys Rev A 2007; 76: 043837.10.1103/PhysRevA.76.043837Search in Google Scholar

[19] Papp SB, Del’Haye P, Diddams SA. Mechanical control of a microrod-resonator optical frequency comb. Phys Rev X 2013; 3: 031003.10.1103/PhysRevX.3.031003Search in Google Scholar

[20] Savchenkov AA, Matsko AB, Ilchenko VS, Solomatine I, Seidel D, Maleki L. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys Rev Lett 2008; 101: 093902.10.1103/PhysRevLett.101.093902Search in Google Scholar PubMed

[21] Grudinin IS, Baumgartel L, Yu N. Frequency comb from a microresonatorwith engineered spectrum. Opt Express 2012; 20: 6604-6609.10.1364/OE.20.006604Search in Google Scholar PubMed

[22] Wang CY, Herr T, Del’Haye P, et al. Mid-infrared optical frequency combs at 2.5 μmbased on crystalline microresonators. Nature Commun 2013; 4: 1345.10.1038/ncomms2335Search in Google Scholar PubMed PubMed Central

[23] Ilchenko VS, Savchenkov AA, Matsko AB, Maleki L. Generation of Kerr frequency combs in a sapphire whispering gallery mode microresonator. Opt Eng 2014; 53: 122607.10.1117/1.OE.53.12.122607Search in Google Scholar

[24] Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyperparametric oscillator. Nature Photon 2009; 4: 41-45.10.1038/nphoton.2009.236Search in Google Scholar

[25] Levy JS, Gondarenko A, Foster MA, Turner-Foster AC, Gaeta AL, Lipson M. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon 2009; 4: 37-40.10.1038/nphoton.2009.259Search in Google Scholar

[26] Jung H, Xiong C, Fong KY, Zhang X, Tang HX. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett 2013; 38: 2810-2813.10.1364/OL.38.002810Search in Google Scholar PubMed

[27] Hausmann BJM, Bulu I, Venkataraman V, Deotare P, Lončar M. Diamond nonlinear photonics. Nature Photon 2014; 8: 369-375.10.1038/nphoton.2014.72Search in Google Scholar

[28] Griflth AG, Lau RKW, Cardenas J, et al. Silicon-chip midinfrared frequency comb generation. Nature Commun 2015; 6: 6299.10.1038/ncomms7299Search in Google Scholar PubMed

[29] Del’Haye P, Herr T, Gavartin E, Gorodetsky ML, Holzwarth R, Kippenberg TJ. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett 2011; 107: 063901.10.1103/PhysRevLett.107.063901Search in Google Scholar PubMed

[30] Okawachi Y, Saha K, Levy JS, Wen YH, Lipson M, Gaeta AL. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett 2011; 36: 3398-3400.10.1364/OL.36.003398Search in Google Scholar PubMed

[31] Ferdous F, Miao H, Leaird DE, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon 2011; 5: 770-776.10.1038/nphoton.2011.255Search in Google Scholar

[32] Papp SB, Diddams SA. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys Rev A 2011; 84: 053833.10.1103/PhysRevA.84.053833Search in Google Scholar

[33] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon 2012; 6: 480-487.10.1038/nphoton.2012.127Search in Google Scholar

[34] Li J, Lee H, Chen T, Vahala KJ. Low-pump-power, low-phasenoise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys Rev Lett 2012; 109: 233901.10.1103/PhysRevLett.109.233901Search in Google Scholar PubMed

[35] Saha K, Okawachi Y, Shim B, et al. Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt Express 2013; 21: 1335-1343.10.1364/OE.21.001335Search in Google Scholar PubMed

[36] Herr T, Brasch V, Jost JD, et al. Temporal solitons in optical microresonators. Nature Photon 2014; 8: 145-152.10.1038/nphoton.2013.343Search in Google Scholar

[37] Del’Haye P, Beha K, Papp SB, Diddams SA. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Phys Rev Lett 2014; 112: 043905.10.1103/PhysRevLett.112.043905Search in Google Scholar PubMed

[38] Herr T, Brasch V, Jost JD, et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys Rev Lett 2014; 113: 123901.10.1103/PhysRevLett.113.123901Search in Google Scholar PubMed

[39] Del’Haye P, Coillet A, Loh W, Beha K, Papp SB, Diddams SA. Phase steps and resonator detuning measurements in microresonator frequency combs. Nature Commun 2015; 6: 5668.10.1038/ncomms6668Search in Google Scholar PubMed

[40] Savchenkov AA, Matsko AB, Liang W, Ilchenko VS, Seidel D, Maleki L. Kerr frequency comb generation in overmoded resonators. Opt Express 2012; 20: 27290-27298.10.1364/OE.20.027290Search in Google Scholar PubMed

[41] Wang PH, Ferdous F, Miao H, et al. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs. Opt Express 2012; 20: 29284-29295.10.1364/OE.20.029284Search in Google Scholar PubMed

[42] Wang PH, Xuan Y, Fan L, et al. Drop-port study of microresonator frequency combs: power transfer, spectra and timedomain characterization. Opt Express 2013; 21: 22441-22452.10.1364/OE.21.022441Search in Google Scholar PubMed

[43] Coillet A, Balakireva I, Henriet R, et al. Azimuthal Turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery-mode resonators. Photon J 2013; 5: 6100409.10.1109/JPHOT.2013.2277882Search in Google Scholar

[44] LiangW, Savchenkov AA, Ilchenko VS, et al. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt Lett 2014; 39: 2920-2923.10.1364/OL.39.002920Search in Google Scholar PubMed

[45] Liu Y, Xuan Y, Xue X, et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica 2014; 1: 137-144.10.1364/OPTICA.1.000137Search in Google Scholar

[46] Xue X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photon 2015; 9: 594-600.10.1038/nphoton.2015.137Search in Google Scholar

[47] Xue X, Xuan Y, Wang PH, et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon Rev 2015; 9: 4, L23-L28.10.1002/lpor.201500107Search in Google Scholar

[48] Huang SW, Zhou H, Yang J, et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys Rev Lett 2015; 114: 053901.10.1103/PhysRevLett.114.053901Search in Google Scholar PubMed

[49] Matsko AB, Savchenkov AA, Liang W, Ilchenko VS, Seidel D, Maleki L. Mode-locked Kerr frequency combs. Opt Lett 2011; 36: 2845-2847.10.1364/OL.36.002845Search in Google Scholar PubMed

[50] Matsko AB, Savchenkov AA, Maleki L. Normal group-velocity dispersion Kerr frequency comb. Opt Lett 2012; 37: 43-45.10.1364/OL.37.000043Search in Google Scholar PubMed

[51] Coen S, Randle HG, Sylvestre T, Erkintalo M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. 2013; 38: 37-39.10.1364/OL.38.000037Search in Google Scholar PubMed

[52] Lamont MRE, Okawachi Y, Gaeta AL. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt Lett 2013; 38: 3478-3479.10.1364/OL.38.003478Search in Google Scholar

[53] Parra-Rivas P, Gomila D, Matías MA, Coen S, Gelens L. Dynamics of localized and patterned structures in the Lugiato- Lefever equation determine the stability and shape of optical frequency combs. Phys Rev A 2014; 89: 043813.10.1103/PhysRevA.89.043813Search in Google Scholar

[54] Godey C, Balakireva IV, Coillet A, Chembo YK. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys Rev A 2014; 89: 063814.10.1103/PhysRevA.89.063814Search in Google Scholar

[55] Lobanov VE, Lihachev G, Kippenberg TJ, Gorodetsky ML. Frequency combs and platicons in optical microresonators with normal GVD. Opt Express 2015; 23: 7713-7721.10.1364/OE.23.007713Search in Google Scholar

[56] Jaramillo-Villegas JA, Xue X, Wang PH, Leaird DE, and Weiner AM. Deterministic single soliton generation and compression in microring resonators avoiding the chaotic region. Opt Express 2015; 23: 9618-9626.10.1364/OE.23.009618Search in Google Scholar

[57] Agrawal GP. Nonlinear Fiber Optics. San Diego, CA, USA, Academic Press, 2001.Search in Google Scholar

[58] Haelterman M, Trillo S, Wabnitz S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt Commun 1992; 91: 401-407.10.1016/0030-4018(92)90367-ZSearch in Google Scholar

[59] Coen S, Haelterman M. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys Rev Lett 1997; 79: 4139-4142.10.1103/PhysRevLett.79.4139Search in Google Scholar

[60] Weiner AM. Ultrafast Optics. Hoboken, NJ, USA, John Wiley & Sons, 2009.Search in Google Scholar

[61] Haus HA, Fujimoto JG, and Ippen EP. Structures for additive pulse mode locking. J Opt Soc Am 1991; 8: 2068-2076.10.1364/JOSAB.8.002068Search in Google Scholar

[62] Tamura K, Ippen EP, Haus HA, and Nelson LE. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt Lett 1993; 18: 1080-1082.10.1364/OL.18.001080Search in Google Scholar

[63] Chong A, Buckley J, Renninger W, and Wise F. All-normaldispersion femtosecond fiber laser. Opt Exp 2006; 14: 10095-10100.10.1364/OE.14.010095Search in Google Scholar PubMed

[64] Del’Haye P, ArcizetO, Gorodetsky ML, Holzwarth R, Kippenberg TJ. Frequency comb assisted diode laser spectroscopy formeasurement of microcavity dispersion. Nature Photon 2009; 3: 529-533.10.1038/nphoton.2009.138Search in Google Scholar

[65] Zhang L, Mu J, Singh V, Agarwal AM, Kimerling LC, Michel J. Intracavity dispersion of microresonators and its engineering for octave-spanning Kerr frequency comb generation. IEEE J Sel Top Quantum Electron 2014; 20: 5900207.Search in Google Scholar

[66] Refractive Index Database and the references therein. (Accessed October 4, 2015, at http://refractiveindex.info).Search in Google Scholar

[67] Grudinin IS, Yu N. Dispersion engineering of crystalline resonators via microstructuring. Optica 2015; 2: 221-224.10.1364/OPTICA.2.000221Search in Google Scholar

[68] Turner AC, Manolatou C, Schmidt BS, Lipson M. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt Express 2006; 14: 4357-4362.10.1364/OE.14.004357Search in Google Scholar

[69] Willner AE, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semicond Sci Technol 2011; 26: 014044.10.1088/0268-1242/26/1/014044Search in Google Scholar

[70] Riemensberger J, Hartinger K, Herr T, Brasch V, Holzwarth R, Kippenberg TJ. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt Express 2012; 20: 27661-27669.10.1364/OE.20.027661Search in Google Scholar PubMed

[71] Chavez Boggio JM, Bodenmüller D, Fremberg T, et al. Dispersion engineered silicon nitridewaveguides by geometrical and refractive-index optimization. J Opt Soc Am B 2014; 31: 2846-2857.10.1364/JOSAB.31.002846Search in Google Scholar

[72] Coen S, Haelterman M, Emplit P, Delage L, Simohamed LM, Reynaud F. Bistable switching induced by modulational instability in a normally dispersive all-fibre ring cavity. J Opt B 1999; 1: 36-42.10.1088/1464-4266/1/1/009Search in Google Scholar

[73] Carmon T, Yang L, Vahala KJ. Dynamical thermal behavior and thermal self-stability of microcavities. Opt Express 2004; 12: 4742-4750.10.1364/OPEX.12.004742Search in Google Scholar PubMed

[74] Ghosh G. Handbook of Optical Constants of Solids: Handbook of Thermo-Optic Coeflcients of OpticalMaterials with Applications. 1st ed. Academic Press, 1998.Search in Google Scholar

[75] Berkhoer AL, Zakharov VE. Self excitation of waves with different polarizations in nonlinear media. Zh Eksp Teor Fiz 1970; 58: 903-911 [J Exp Theor Phys 1970; 31: 486-490].Search in Google Scholar

[76] Agrawal GP. Modulation instability induced by cross-phase modulation. Phys Rev Lett 1987; 59: 880-883.10.1103/PhysRevLett.59.880Search in Google Scholar PubMed

[77] Zolotovskii IO, Petrov AN, Sementsov DI. Modulation instability of wave packets in the presence of linear and nonlinear mode coupling. Zh Eksp Teor Fiz 2006; 76: 90-95 [Tech Phys 2006; 51: 236-241].10.1134/S1063784206020149Search in Google Scholar

[78] Haus HA, Popović MA, Watts MR, Manolatou C, Little BE, Chu ST. Optical resonators and filters. In: Vahala K, ed. Optical Mi crocavities. Singapore, World Scientific Publishing, 2004, 9.10.1142/9789812565730_0001Search in Google Scholar

[79] Grudinin IS, Baumgartel L, and Yu N. Impact of cavity spectrum on span in microresonator frequency combs. Opt Exp 2013; 21: 26929-26935.10.1364/OE.21.026929Search in Google Scholar PubMed

[80] Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 2000; 71: 1929-1960.10.1063/1.1150614Search in Google Scholar

[81] Weiner AM, Heritage JP, Hawkins RJ, et al. Experimental observation of the fundamental dark soliton in optical fibers. Phys Rev Lett 1988; 61: 2445-2448.10.1103/PhysRevLett.61.2445Search in Google Scholar PubMed

[82] Hasegawa A, Matsumoto M. Optical Solitons in Fibers. Springer, 2003.10.1007/978-3-540-46064-0Search in Google Scholar

[83] Rosanov NN. Spatial Hysteresis and Optical Patterns. NY, USA, Springer, 2002.10.1007/978-3-662-04792-7Search in Google Scholar

[84] Coen S, Tlidi M, Emplit Ph, Haelterman M, Convection versus Dispersion in Optical Bistability. Phys Rev Lett 1999; 83: 2328-2331.10.1103/PhysRevLett.83.2328Search in Google Scholar

[85] Gentry CM, Zeng X, Popović MA. Tunable coupled-mode dispersion compensation and its application to on-chip resonant four-wave mixing. Opt Lett 2014; 39: 5689-5692.10.1364/OL.39.005689Search in Google Scholar PubMed

[86] Brasch V, Herr T, Geiselmann M, et al. Photonic chip based optical frequency comb using soliton induced Cherenkov radiation. arXiv:1410.8598v2 [physics.optics].Search in Google Scholar

Received: 2015-10-16
Accepted: 2015-12-23
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 29.1.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0016/html
Scroll Up Arrow