Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Optical Frequency Comb Generation based on Erbium Fiber Lasers

  • Stefan Droste EMAIL logo , Gabriel Ycas , Brian R. Washburn , Ian Coddington and Nathan R. Newbury
From the journal Nanophotonics

Abstract

Optical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.

References

[1] J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279-1295 (2006).Search in Google Scholar

[2] T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297-1309 (2006) [doi:10.1103/RevModPhys.78.1297].10.1103/RevModPhys.78.1297Search in Google Scholar

[3] R. Holzwarth et al., “Optical Frequency Synthesizer for Precision Spectroscopy,” Phys. Rev. Lett. 85(11), 2264-2267 (2000) [doi:10.1103/PhysRevLett.85.2264].10.1103/PhysRevLett.85.2264Search in Google Scholar PubMed

[4] S. A. Diddams et al., “Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb,” Phys. Rev. Lett. 84(22), 5102-5105 (2000) [doi:10.1103/PhysRevLett.84.5102].10.1103/PhysRevLett.84.5102Search in Google Scholar PubMed

[5] D. J. Jones et al., “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288(5466), 635-639 (2000) [doi:10.1126/science.288.5466.635].10.1126/science.288.5466.635Search in Google Scholar PubMed

[6] S. A. Diddams et al., “An Optical Clock Based on a Single Trapped 199Hg+ Ion,” Science 293(5531), 825-828 (2001).10.1126/science.1061171Search in Google Scholar PubMed

[7] S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev Mod Phys 75(1), 325-342 (2003) [doi:10.1103/RevModPhys.75.325].10.1103/RevModPhys.75.325Search in Google Scholar

[8] N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photon 5(4), 186-188 (2011).10.1038/nphoton.2011.38Search in Google Scholar

[9] S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27(11), B51-B62 (2010) [doi:10.1364/JOSAB.27.000B51].10.1364/JOSAB.27.000B51Search in Google Scholar

[10] T. Udem et al., “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881-883 (1999) [doi:10.1364/OL.24.000881].10.1364/OL.24.000881Search in Google Scholar

[11] F. R. Giorgetta et al., “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434-438 (2013) [doi:10.1038/nphoton.2013.69].10.1038/nphoton.2013.69Search in Google Scholar

[12] H. R. Telle et al., “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl Phys B 69(4), 327-332 (1999).Search in Google Scholar

[13] J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25 (2000) [doi:10.1364/OL.25.000025].10.1364/OL.25.000025Search in Google Scholar PubMed

[14] M. Nakazawa et al., “Coherence Degradation in the Process of SupercontinuumGeneration in an Optical Fiber,” Opt Fiber Techn 4, 215-223 (1998).10.1006/ofte.1998.0253Search in Google Scholar

[15] K. L. Corwin et al., “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys Rev Lett 90(11), 113904 (2003).10.1103/PhysRevLett.90.113904Search in Google Scholar PubMed

[16] N. R. Newbury et al., “Noise amplification during supercontinuum generation in microstructure fiber,” Opt Lett 28(11), 944-946 (2002).10.1364/OL.28.000944Search in Google Scholar

[17] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135-1184 (2006) [doi:10.1103/RevModPhys.78.1135].10.1103/RevModPhys.78.1135Search in Google Scholar

[18] J. W. Nicholson et al., “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28(8), 643 (2003) [doi:10.1364/OL.28.000643].10.1364/OL.28.000643Search in Google Scholar PubMed

[19] J. W. Nicholson and M. F. Yan, “Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm,” Opt. Express 12(4), 679 (2004) [doi:10.1364/OPEX.12.000679].10.1364/OPEX.12.000679Search in Google Scholar PubMed

[20] N. Nishizawa and T. Goto, “Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L365-L367 (2001) [doi:10.1143/JJAP.40.L365].10.1143/JJAP.40.L365Search in Google Scholar

[21] F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrierenvelope phase evolution,” Opt. Express 11(6), 594-600 (2003) [doi:10.1364/OE.11.000594].10.1364/OE.11.000594Search in Google Scholar PubMed

[22] B. R. Washburn et al., “An all-fiber, phase-locked supercontinuum source for frequency metrology,” presented at Frontiers in Optics, 2003, PostDeadline Paper 7, OSA [doi:10.1364/FIO.2003.PDP7].10.1364/FIO.2003.PDP7Search in Google Scholar

[23] B. R. Washburn et al., “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt Lett 29(3), 250-252 (2004).10.1364/OL.29.000250Search in Google Scholar PubMed

[24] H. Hundertmark et al., “Phase-locked carrier-envelopeoffset frequency at 1560 nm,” Opt. Express 12(5), 770 (2004) [doi:10.1364/OPEX.12.000770].10.1364/OPEX.12.000770Search in Google Scholar PubMed

[25] T. R. Schibli et al., “Frequency metrology with a turnkey all-fiber system,” Opt Lett 29(21), 2467-2469 (2004) [doi:10.1364/OL.29.002467].10.1364/OL.29.002467Search in Google Scholar

[26] P. Kubina et al., “Long term comparison of two fiber based frequency comb systems,” Opt. Express 13(3), 904-909 (2005) [doi:10.1364/OPEX.13.000904].10.1364/OPEX.13.000904Search in Google Scholar

[27] H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983-996 (1993) [doi:10.1109/3.206583].10.1109/3.206583Search in Google Scholar

[28] J. J. McFerran et al., “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt Lett 31(13), 1997-1999 (2006).10.1364/OL.31.001997Search in Google Scholar

[29] J. J. McFerran et al., “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian f (ceo) phase excursions,” Appl Phys B 86(2), 219-227 (2007).10.1007/s00340-006-2426-4Search in Google Scholar

[30] R. Paschotta et al., “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B 82(2), 265-273 (2005) [doi:10.1007/s00340-005-2041-9].10.1007/s00340-005-2041-9Search in Google Scholar

[31] N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J Opt Soc Am B 24(8), 1756-1770 (2007).10.1364/JOSAB.24.001756Search in Google Scholar

[32] E. Benkler et al., “Circumvention of noise contributions in fiber laser based frequency combs,” Opt. Express 13(15), 5662-5668 (2005).10.1364/OPEX.13.005662Search in Google Scholar PubMed

[33] T. K. Kim et al., “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443-4445 (2011) [doi:10.1364/OL.36.004443].10.1364/OL.36.004443Search in Google Scholar PubMed

[34] W. C. Swann et al., “Fiber-laser frequency combs with subhertz relative linewidths,” Opt Lett 31(20), 3046-3048 (2006).10.1364/OL.31.003046Search in Google Scholar PubMed

[35] I. Coddington et al., “Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nat. Photonics 1(5), 283-287 (2007) [doi:10.1038/nphoton.2007.71].10.1038/nphoton.2007.71Search in Google Scholar

[36] L. A. M. Johnson, P. Gill, and H. S. Margolis, “Evaluating the performance of the NPL femtosecond frequency combs: agreement at the 10 −21 level,” Metrologia 52(1), 62-71 (2015) [doi:10.1088/0026-1394/52/1/62].10.1088/0026-1394/52/1/62Search in Google Scholar

[37] F. Quinlan et al., “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581 (2014) [doi:10.1364/OL.39.001581].10.1364/OL.39.001581Search in Google Scholar PubMed

[38] D. Nicolodi et al., “Spectral purity transfer between optical wavelengths at the 10-18 level,” Nat. Photonics 8(3), 219-223 (2014) [doi:10.1038/nphoton.2013.361].10.1038/nphoton.2013.361Search in Google Scholar

[39] http://www.menlosystems.com/Search in Google Scholar

[40] http://www.toptica.com/Search in Google Scholar

[41] http://www.imra.com/Search in Google Scholar

[42] F. Adler et al., “Phase-locked two-branch erbium-doped fiber laser system for long-term precisionmeasurements of optical frequencies,” Opt Express 12(24), 5872-5880 (2004).10.1364/OPEX.12.005872Search in Google Scholar PubMed

[43] G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660-2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37(12), 2199 (2012) [doi:10.1364/OL.37.002199].10.1364/OL.37.002199Search in Google Scholar PubMed

[44] Y. Nakajima et al., “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667-1676 (2010) [doi:10.1364/OE.18.001667].10.1364/OE.18.001667Search in Google Scholar PubMed

[45] F. Adler et al., “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er: fiber laser,” Opt Lett 32(24), 3504-3506 (2007).Search in Google Scholar

[46] P. Maddaloni et al., “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006) [doi:10.1088/1367-2630/8/11/262].10.1088/1367-2630/8/11/262Search in Google Scholar

[47] C. Erny et al., “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source,” Opt. Lett. 32(9), 1138-1140 (2007) [doi:10.1364/OL.32.001138].10.1364/OL.32.001138Search in Google Scholar PubMed

[48] P. Maddaloni, P. Cancio, and P. De Natale, “Optical comb generators for laser frequency measurement,” Meas Sci Technol 20(5), 052001 (2009). 10.1088/0957-0233/20/5/052001Search in Google Scholar

[49] E. Baumann et al., “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dualcomb spectrometer,” Phys. Rev. A 84(6), 062513 (2011) [doi:10.1103/PhysRevA.84.062513].10.1103/PhysRevA.84.062513Search in Google Scholar

[50] F. Keilmann and S.Amarie, “Mid-infrared FrequencyCombSpanning an Octave Based on an Er Fiber Laser and Difference- Frequency Generation,” J. Infrared Millim. TerahertzWaves 33(5), 479-484 (2012) [doi:10.1007/s10762-012-9894-x].10.1007/s10762-012-9894-xSearch in Google Scholar

[51] F. Zhu et al., “High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator,” Opt. Lett. 38(13), 2360-2362 (2013) [doi:10.1364/OL.38.002360].10.1364/OL.38.002360Search in Google Scholar PubMed

[52] F. C. Cruz et al., “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 26814 (2015) [doi:10.1364/OE.23.026814].10.1364/OE.23.026814Search in Google Scholar PubMed

[53] K. Minoshima and H.Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl Opt 39(30), 5512-5517 (2000).10.1364/AO.39.005512Search in Google Scholar

[54] H. Hundertmark et al., “Stable sub-85 fs passively mode-locked Erbiumfiber oscillator with tunable repetition rate,” Opt. Express 12(14), 3178-3183 (2004) [doi:10.1364/OPEX.12.003178].10.1364/OPEX.12.003178Search in Google Scholar

[55] B. Washburn et al., “Fiber-laser-based frequency comb with a tunable repetition rate,” Opt Express 12(20), 4999-5004 (2004).10.1364/OPEX.12.004999Search in Google Scholar PubMed

[56] Y. Liu et al., “Low-timing-jitter, stretched-pulse passively modelocked fiber laser with tunable repetition rate and high operation stability,” J. Opt. 12(9), 095204 (2010) [doi:10.1088/2040-8978/12/9/095204].10.1088/2040-8978/12/9/095204Search in Google Scholar

[57] T. R. Schibli et al., “Phase-locked widely tunable optical singlefrequency generator based on a femtosecond comb,” Opt Lett 30(17), 2323-2325 (2005).10.1364/OL.30.002323Search in Google Scholar

[58] Y.-J. Kim et al., “All-fiber-based optical frequency generation from an Er-doped fiber femtosecond laser,” Opt Express 17(13), 10939-10945 (2009).10.1364/OE.17.010939Search in Google Scholar

[59] Y.-J. Kim et al., “Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication,” Laser Phys. Lett. 7(7), 522 (2010) [doi:10.1002/lapl.201010012].10.1002/lapl.201010012Search in Google Scholar

[60] F. Rohde, E. Benkler, and H. R. Telle, “High contrast, low noise selection and amplification of an individual optical frequency comb line,” Opt. Lett. 38(2), 103 (2013) [doi:10.1364/OL.38.000103].10.1364/OL.38.000103Search in Google Scholar PubMed

[61] E. Benkler, F. Rohde, and H. R. Telle, “Endless frequency shifting of optical frequency comb lines,” Opt. Express 21(5), 5793 (2013) [doi:10.1364/OE.21.005793].10.1364/OE.21.005793Search in Google Scholar PubMed

[62] I. Coddington et al., “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J Sel Top. Quantum Electron 18(1), 228-238 (2012).10.1109/JSTQE.2011.2114875Search in Google Scholar

[63] J. Jost, J. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express 10(12), 515-520 (2002) [doi:10.1364/OE.10.000515].10.1364/OE.10.000515Search in Google Scholar PubMed

[64] V. Ahtee, M. Merimaa, and K. Nyholm, “Single-frequency synthesis at telecommunication wavelengths,” Opt Express 17(6), 4890-4896 (2009).10.1364/OE.17.004890Search in Google Scholar

[65] Y.-J. Kim et al., “Development of Fiber Femtosecond Lasers for Advanced Metrological Space Missions,” presented at The 10th Conference on Lasers and Electro-Optics Pacific Rim, 2013, Kyoto, Japan, Optical Society of America.Search in Google Scholar

[66] T. Wilken et al., “A frequency comb and precision spectroscopy experiment in space,” in CLEO:2013, p. AF2H.5, Optical Society of America, San Jose (2013) [doi:10.1364/CLEO_AT.2013.AF2H.5].10.1364/CLEO_AT.2013.AF2H.5Search in Google Scholar

[67] L. C. Sinclair et al., “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996-7006 (2014) [doi:10.1364/OE.22.006996].10.1364/OE.22.006996Search in Google Scholar PubMed

[68] E. Baumann et al., “High-performance, vibration-immune fiberlaser frequency comb,” Opt Lett 34(5), 638-640 (2009).10.1364/OL.34.000638Search in Google Scholar PubMed

[69] J. Lee et al., “Testing of a femtosecond pulse laser in outer space,” Sci. Rep. 4 (2014) [doi:10.1038/srep05134].10.1038/srep05134Search in Google Scholar PubMed PubMed Central

[70] L. C. Sinclair et al., “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015) [doi:10.1063/1.4928163].10.1063/1.4928163Search in Google Scholar PubMed

[71] M. Lezius et al., “Frequency comb metrology in space,” presented at 8th Symposium on Frequency Standards and Metrology, 2015, Potsdam, Germany.Search in Google Scholar

[72] L. Nelson et al., “Ultrashort-pulse fiber ring lasers,” Appl Phys B 65(2), 277-294 (1997) [doi:10.1007/s003400050273].10.1007/s003400050273Search in Google Scholar

[73] M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J Sel Top. Quantum Electron 15(1), 191-206 (2009) [doi:10.1109/JSTQE.2008.2010246].10.1109/JSTQE.2008.2010246Search in Google Scholar

[74] M. E. Fermann and I. Hartl, “Fiber laser based hyperspectral sources,” Laser Phys. Lett. 6(1), 11 (2009) [doi:10.1002/lapl.200810090].10.1002/lapl.200810090Search in Google Scholar

[75] M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868-874 (2013) [doi:10.1038/nphoton.2013.280].10.1038/nphoton.2013.280Search in Google Scholar

[76] A. Ruehl, “Advances in Yb:Fiber Frequency Comb Technology,” Opt. Photonics News 23(5), 30 (2012) [doi:10.1364/OPN.23.5.000030].10.1364/OPN.23.5.000030Search in Google Scholar

[77] C.-C. Lee et al., “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084 (2012) [doi:10.1364/OL.37.003084].10.1364/OL.37.003084Search in Google Scholar PubMed

[78] J. Jiang et al., “Fully stabilized, self-referenced thulium fiber frequency comb,” in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC), 2011 Conference on and 12th European Quantum Electronics Conference, pp. 1-1 (2011) [doi:10.1109/CLEOE.2011.5943710].10.1109/CLEOE.2011.5943710Search in Google Scholar

[79] I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008) [doi:10.1103/PhysRevLett.100.013902].10.1103/PhysRevLett.100.013902Search in Google Scholar PubMed

[80] J.-D. Deschęnes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358-23370 (2010) [doi:10.1364/OE.18.023358].10.1364/OE.18.023358Search in Google Scholar PubMed

[81] W. C. Swann et al., “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt Express 19(24), 24387-24395 (2011) [doi:10.1364/OE.19.024387].10.1364/OE.19.024387Search in Google Scholar PubMed

[82] H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1-6 (2002) [doi:10.1007/s003400100735].10.1007/s003400100735Search in Google Scholar

[83] J. Stenger et al., “Ultraprecise Measurement of Optical Frequency Ratios,” Phys. Rev. Lett. 88(7), 073601 (2002) [doi:10.1103/PhysRevLett.88.073601].10.1103/PhysRevLett.88.073601Search in Google Scholar PubMed

[84] P.-T. Ho, “Phase and amplitude fluctuations in a mode-locked laser,” IEEE J. Quantum Electron. 21(11), 1806-1813 (1985) [doi:10.1109/JQE.1985.1072594].10.1109/JQE.1985.1072594Search in Google Scholar

[85] J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11(10), 665 (1986) [doi:10.1364/OL.11.000665].10.1364/OL.11.000665Search in Google Scholar

[86] N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J Quantum Electron 41(11), 1388-1402 (2005).10.1109/JQE.2005.857657Search in Google Scholar

[87] R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163-173 (2004) [doi:10.1007/s00340-004-1548-9].10.1007/s00340-004-1548-9Search in Google Scholar

[88] B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt Express 13(26), 10622-10633 (2005).10.1364/OPEX.13.010622Search in Google Scholar PubMed

[89] J. A. Cox et al., “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522 (2010) [doi:10.1364/OL.35.003522].10.1364/OL.35.003522Search in Google Scholar PubMed

[90] C. Kim et al., “Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber,” Opt. Express 20(28), 29524 (2012) [doi:10.1364/OE.20.029524].10.1364/OE.20.029524Search in Google Scholar PubMed

[91] I. Coddington,W. C. Swann, and N. R. Newbury, “Coherent dualcomb spectroscopy at high signal-to-noise ratio,” Phys Rev A 82(4), 043817 (2010).10.1103/PhysRevA.82.043817Search in Google Scholar

[92] J.-L. Peng and R.-H. Shu, “Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology,” Opt Express 15(8), 4485-4492 (2007).10.1364/OE.15.004485Search in Google Scholar

[93] J. Chen et al., “High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser,” Opt Lett 32(11), 1566-1568 (2007).10.1364/OL.32.001566Search in Google Scholar PubMed

[94] Y. Le Coq et al., “Investigation of an optical frequency comb with intracavity EOMand optimization of microwave generation,” April 2012, 238-241, IEEE [doi:10.1109/EFTF.2012.6502374].10.1109/EFTF.2012.6502374Search in Google Scholar

[95] H. Inaba et al., “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223-5231 (2006) [doi:10.1364/OE.14.005223].10.1364/OE.14.005223Search in Google Scholar PubMed

[96] D. D. Hudson et al., “Mode-locked fiber laser frequencycontrolled with an intracavity electro-optic modulator,” Opt Lett 30(21), 2948-2950 (2005).10.1364/OL.30.002948Search in Google Scholar PubMed

[97] K. Iwakuni et al., “Narrow linewidth comb realized with a modelocked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 13769 (2012) [doi:10.1364/OE.20.013769].10.1364/OE.20.013769Search in Google Scholar PubMed

[98] B. R. Washburn et al., “A phase locked, fiber laser-based frequency comb: limit on optical linewidth,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies (2004), paperCMO3, p.CMO3, Optical Society of America (2004).Search in Google Scholar

[99] H. Byun et al., “Compact, stable 1 GHz femtosecond Erdoped fiber lasers,” Appl Opt 49(29), 5577-5582 (2010) [doi:10.1364/AO.49.005577].10.1364/AO.49.005577Search in Google Scholar PubMed

[100] L. C. Sinclair et al., “Fully-Stabilized All Polarization- Maintaining Fiber Erbium Frequency Comb,” in Frontiers in Optics, Optical Society of America, Orlando, Florida (2013).10.1364/FIO.2013.FTu1A.3Search in Google Scholar

[101] H. Byun et al., “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33(19), 2221-2223 (2008) [doi:10.1364/OL.33.002221].10.1364/OL.33.002221Search in Google Scholar PubMed

[102] I. Hartl et al., “Integrated self-referenced frequency-comb laser based on a combination of fiber andwaveguide technology,” Opt. Express 13(17), 6490 (2005) [doi:10.1364/OPEX.13.006490].10.1364/OPEX.13.006490Search in Google Scholar PubMed

[103] D. Chao et al., “Self-referenced Erbium fiber laser frequency comb at a GHz repetition rate,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, pp. 1-3 (2012).10.1364/OFC.2012.OW1C.2Search in Google Scholar

[104] T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501-18509 (2011) [doi:10.1364/OE.19.018501].10.1364/OE.19.018501Search in Google Scholar PubMed

[105] J. Lim et al., “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17(16), 14115 (2009) [doi:10.1364/OE.17.014115].10.1364/OE.17.014115Search in Google Scholar

[106] T.-H. Wu et al., “Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design,” Opt. Express 19(6), 5313 (2011) [doi:10.1364/OE.19.005313].10.1364/OE.19.005313Search in Google Scholar PubMed

[107] K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226-2228 (1992) [doi:10.1049/el:19921430].10.1049/el:19921430Search in Google Scholar

[108] V. J. Matsas et al., “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391-1393 (1992) [doi:10.1049/el:19920885].10.1049/el:19920885Search in Google Scholar

[109] M. Hofer et al., “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502 (1991) [doi:10.1364/OL.16.000502].10.1364/OL.16.000502Search in Google Scholar

[110] K. Tamura et al., “Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser,” Opt Lett 19(1), 46-48 (1994).10.1364/OL.19.000046Search in Google Scholar PubMed

[111] H. A. Haus et al., “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J QuantumElectron 31(3), 591-598 (1995) [doi:10.1109/3.364417].10.1109/3.364417Search in Google Scholar

[112] K. Tamura et al., “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080 (1993) [doi:10.1364/OL.18.001080].10.1364/OL.18.001080Search in Google Scholar

[113] D. J. Richardson et al., “Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,” Electron. Lett. 27(6), 542-544 (1991) [doi:10.1049/el:19910341].10.1049/el:19910341Search in Google Scholar

[114] I. I.N. Duling, “Subpicosecond all-fibre erbiumlaser,” Electron. Lett. 27(6), 544-545 (1991) [doi:10.1049/el:19910342].10.1049/el:19910342Search in Google Scholar

[115] I. Duling, IrI N., “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt Lett 16(8), 539-541 (1991).10.1364/OL.16.000539Search in Google Scholar PubMed

[116] J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt Express 14(18), 8160-8167 (2006).10.1364/OE.14.008160Search in Google Scholar PubMed

[117] W. D. Hänsel et al., “Laser with non-linear optical loop mirror,” EP2637265 A1 (2013).Search in Google Scholar

[118] W. Hänsel et al., “Ultra-low phase noise all-PM Er:fiber optical frequency comb,” 2015, ATh4A.2, OSA [doi:10.1364/ASSL.2015.ATh4A.2].10.1364/ASSL.2015.ATh4A.2Search in Google Scholar

[119] U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15-28 (2010) [doi:10.1007/s00340-010-4045-3].10.1007/s00340-010-4045-3Search in Google Scholar

[120] U. Keller et al., “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. QuantumElectron. 2(3), 435-453 (1996) [doi:10.1109/2944.571743].10.1109/2944.571743Search in Google Scholar

[121] J. J. McFerran et al., “A passively mode-locked fiber laser at 1.54 μm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155 (2007) [doi:10.1364/OE.15.013155].10.1364/OE.15.013155Search in Google Scholar

[122] S. Wang et al., “Soliton Wake Instability in a SESAM Modelocked Fiber Laser,” in CLEO: 2014, p. SW3E.4, Optical Society of America (2014) [doi:10.1364/CLEO_SI.2014.SW3E.4].10.1364/CLEO_SI.2014.SW3E.4Search in Google Scholar

[123] K. Wu et al., “Noise conversion from pump to the passively mode-locked fiber lasers at 15 μm,” Opt. Lett. 37(11), 1901 (2012) [doi:10.1364/OL.37.001901].10.1364/OL.37.001901Search in Google Scholar PubMed

[124] N. Kuse et al., “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342 (2015) [doi:10.1364/OE.23.024342].10.1364/OE.23.024342Search in Google Scholar PubMed

[125] A.Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7(11), 842-845 (2013) [doi:10.1038/nphoton.2013.304].10.1038/nphoton.2013.304Search in Google Scholar

[126] S. Y. Set et al., “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137-146 (2004) [doi:10.1109/JSTQE.2003.822912].10.1109/JSTQE.2003.822912Search in Google Scholar

[127] N. Nishizawa et al., “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt Express 16(13), 9429-9435 (2008).10.1364/OE.16.009429Search in Google Scholar PubMed

[128] Z. Sun et al., “Ultrafast stretched-pulse fiber laser modelocked by carbon nanotubes,” Nano Res. 3(6), 404-411 (2010) [doi:10.1007/s12274-010-1045-x].10.1007/s12274-010-1045-xSearch in Google Scholar

[129] H. Ahmad et al., “Mode-locked L-band bismuth-erbium fiber laser using carbon nanotubes,” Appl. Phys. B 115(3), 407-412 (2013) [doi:10.1007/s00340-013-5616-x].10.1007/s00340-013-5616-xSearch in Google Scholar

[130] Z. Sun et al., “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803-810 (2010) [doi:10.1021/nn901703e].10.1021/nn901703eSearch in Google Scholar PubMed

[131] D. G. Purdie et al., “Few-cycle pulses from a graphene modelocked all-fiber laser,” Appl. Phys. Lett. 106(25), 253101 (2015) [doi:10.1063/1.4922397].10.1063/1.4922397Search in Google Scholar

[132] D. Popa et al., “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010) [doi:10.1063/1.3517251].10.1063/1.3517251Search in Google Scholar

[133] S. Kim et al., “Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power,” Opt. Express 20(14), 15054-15060 (2012) [doi:10.1364/OE.20.015054].10.1364/OE.20.015054Search in Google Scholar PubMed

[134] X. Li, W. Zou, and J. Chen, “419 fs hybridly mode-locked Erdoped fiber laser at 212 MHz repetition rate,” Opt. Lett. 39(6), 1553 (2014) [doi:10.1364/OL.39.001553].10.1364/OL.39.001553Search in Google Scholar PubMed

[135] X.Wu et al., “Hybrid mode-locked Er-fiber oscillatorwith awide repetition rate stabilization range,” Appl. Opt. 54(7), 1681 (2015) [doi:10.1364/AO.54.001681].10.1364/AO.54.001681Search in Google Scholar

[136] K. Hitachi et al., “Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide,” Opt. Express 22(2), 1629 (2014) [doi:10.1364/OE.22.001629].10.1364/OE.22.001629Search in Google Scholar PubMed

[137] T. M. Ramond et al., “Phase-coherent link from optical to microwave frequencies by means of the broadband continuumfrom a 1-GHz Ti:sapphire femtosecondoscillator,” Opt. Lett. 27(20), 1842 (2002) [doi:10.1364/OL.27.001842].10.1364/OL.27.001842Search in Google Scholar

[138] K. Tamura and M. Nakazawa, “Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,” Opt. Lett. 21(1), 68-70 (1996) [doi:10.1364/OL.21.000068].10.1364/OL.21.000068Search in Google Scholar

[139] Y. Kim et al., “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972 (2009) [doi:10.1364/OE.17.011972].10.1364/OE.17.011972Search in Google Scholar

[140] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys Rev Lett 45, 1095-1098 (1980).Search in Google Scholar

[141] G. P. Agrawal, “Nonlinear Fiber Optics,” in Nonlinear Science at the Dawn of the 21st Century, P. L. Christiansen, M. P. Sørensen, and A. C. Scott, Eds., pp. 195-211, Springer Berlin Heidelberg (2000).10.1007/3-540-46629-0_9Search in Google Scholar

[142] G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-Steepening of Prechirped Amplified and Compressed 29-fs Fiber Laser Pulse in Large-Mode-Area Erbium-Doped Fiber Amplifier,” J. Light. Technol. 25(11), 3597-3601 (2007).10.1109/JLT.2007.907793Search in Google Scholar

[143] T. Okuno et al., “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385-1391 (1999) [doi:10.1109/2944.806765].10.1109/2944.806765Search in Google Scholar

[144] M. Hirano et al., “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J Sel Top. Quantum Elecron 15(1), 103-113 (2009) [doi:10.1109/JSTQE.2008.2010241].10.1109/JSTQE.2008.2010241Search in Google Scholar

[145] http://fiber-optic-catalog.ofsoptics.com/viewitems/optical-- fibers/highly-nonlinear-fiber-optical-fibers1Search in Google Scholar

[146] J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180 (2002) [doi:10.1364/OL.27.001180].10.1364/OL.27.001180Search in Google Scholar

[147] A. Ruehl et al., “Ultrabroadband coherent supercontinuumfrequency comb,” Phys Rev A 84(1), 011806 - (2011).10.1103/PhysRevA.84.011806Search in Google Scholar

[148] C. R. Menyuk et al., “Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling,” Opt. Express 15(11), 6677 (2007) [doi:10.1364/OE.15.006677].10.1364/OE.15.006677Search in Google Scholar

[149] T. M. Fortier et al., “Generation of ultrastable microwaves via optical frequency division,” Nat. Photon 5(7), 425-429 (2011) [doi:10.1038/NPHOTON.2011.121].10.1038/nphoton.2011.121Search in Google Scholar

[150] J. Millo et al., “Ultra-low-noise microwave extraction from fiberbased optical frequency comb,” Opt Lett 34(23), 3707-3709 (2009).10.1364/OL.34.003707Search in Google Scholar PubMed

[151] F. Quinlan et al., “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt Lett 36(16), 3260-3262 (2011).Search in Google Scholar

[152] H. Hundertmark, Erbium fiber lasers for a frequency comb at 1560 nm, Cuvillier Verlag (2006).Search in Google Scholar

[153] W. Zhang et al., “Characterizing a fiber-based frequency comb with electro-optic modulator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432-438 (2012) [doi:10.1109/TUFFC.2012.2212].10.1109/TUFFC.2012.2212Search in Google Scholar PubMed

[154] H. Inaba et al., “Frequency-control characteristics of an erbiumbased mode-locked fiber laser with an optically pumped ytterbium fiber,” in 2015 Conference on Lasers and Electro-Optics (CLEO), pp. 1-2 (2015).10.1364/CLEO_AT.2015.JTh2A.80Search in Google Scholar

[155] M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054 (2013) [doi:10.1364/OE.21.030054].10.1364/OE.21.030054Search in Google Scholar PubMed

[156] T. C. Briles et al., “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18(10), 9739 (2010) [doi:10.1364/OE.18.009739].10.1364/OE.18.009739Search in Google Scholar PubMed

[157] C.-C. Lee et al., “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Opt. Express 20(5), 5264-5269 (2012) [doi:10.1364/OE.20.005264].10.1364/OE.20.005264Search in Google Scholar PubMed

[158] S. Okubo et al., “Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm,” Appl. Phys. Express 8(8), 082402 (2015) [doi:10.7567/APEX.8.082402].10.7567/APEX.8.082402Search in Google Scholar

[159] S. Koke et al., “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photon 4, 462 (2010).10.1038/nphoton.2010.91Search in Google Scholar

[160] M. Zimmermann et al., “Optical clockwork with an offsetfree difference-frequency comb:accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310 (2004) [doi:10.1364/OL.29.000310]. 10.1364/OL.29.000310Search in Google Scholar

[161] Y. Deng, F. Lu, and W. H. Knox, “Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications,” Opt. Express 13(12), 4589 (2005) [doi:10.1364/OPEX.13.004589].10.1364/OPEX.13.004589Search in Google Scholar PubMed

[162] T. Nakamura, I. Ito, and Y. Kobayashi, “Offset-free broadband Yb:fiber optical frequency comb for optical clocks,” Opt. Express 23(15), 19376 (2015) [doi:10.1364/OE.23.019376].10.1364/OE.23.019376Search in Google Scholar PubMed

[163] F. Zhu et al., “Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air,” Laser Phys. Lett. 12(9), 095701 (2015) [doi:10.1088/1612-2011/12/9/095701].10.1088/1612-2011/12/9/095701Search in Google Scholar

[164] W. Zhang et al., “Sub-100 attoseconds stability optics-tomicrowave synchronization,” Appl. Phys. Lett. 96(21), 211105 (2010) [doi:10.1063/1.3431299].10.1063/1.3431299Search in Google Scholar

[165] J. Roy et al., “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932-21939 (2012) [doi:10.1364/OE.20.021932].10.1364/OE.20.021932Search in Google Scholar PubMed

[166] T. Ideguchi et al., “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5 (2014) [doi:10.1038/ncomms4375].10.1038/ncomms4375Search in Google Scholar PubMed PubMed Central

[167] S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 918-925 (2007) [doi:10.1109/TUFFC.2007.337].10.1109/TUFFC.2007.337Search in Google Scholar PubMed

[168] D. B. Sullivan et al., “NIST Technical Note 1337: Characterization of Clocks and Oscillators,” National Institute of Standards and Technology (1990).Search in Google Scholar

[169] Fred L. Walls and Andrea DeMarchi, “RF Spectrum of a Signal after Frequency Multiplication; Measurement and Comparison with Simple Calculation,” IEEE Trans Instrum. Meas. 24(3), 210-217 (1975).10.1109/TIM.1975.4314411Search in Google Scholar

[170] T. R. Schibli et al., “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt Lett 28(11), 947-949 (2003) [doi:10.1364/OL.28.000947].10.1364/OL.28.000947Search in Google Scholar PubMed

Received: 2015-10-16
Accepted: 2015-12-10
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 8.2.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0019/html
Scroll Up Arrow