Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Aluminum nitride as nonlinear optical material for on-chip frequency comb generation and frequency conversion

  • Hojoong Jung and Hong X. Tang EMAIL logo
From the journal Nanophotonics

Abstract

A number of dielectric materials have been employed for on-chip frequency comb generation. Silicon based dielectrics such as silicon dioxide (SiO2) and silicon nitride (SiN) are particularly attractive comb materials due to their low optical loss and maturity in nanofabrication. They offer third-order Kerr nonlinearity (χ(3)), but little second-order Pockels (χ(2)) effect. Materials possessing both strong χ(2) and χ(3) are desired to enable selfreferenced frequency combs and active control of comb generation. In this review, we introduce another CMOS-compatible comb material, aluminum nitride (AlN),which offers both second and third order nonlinearities. A review of the advantages of AlN as linear and nonlinear optical material will be provided, and fabrication techniques of low loss AlN waveguides from the visible to infrared (IR) region will be discussed.We will then show the frequency comb generation including IR, red, and green combs in high-Q AlN micro-rings from single CW IR laser input via combination of Kerr and Pockels nonlinearity. Finally, the fast speed on-off switching of frequency comb using the Pockels effect of AlN will be shown,which further enriches the applications of the frequency comb.

References

[1] Th. Udem, R. Holzwarth & T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002).Search in Google Scholar

[2] S. T. Cundiff and Jun Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325 (2003).Search in Google Scholar

[3] S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. Wineland, “An Optical Clock Based on a Single Trapped 199Hg+ Ion,” Science 293(5531), 825-828, (2001).10.1126/science.1061171Search in Google Scholar PubMed

[4] H. S. Margolis, G. P. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, P. Gill, “Hertz-Level Measurement of the Optical Clock Frequency in a Single 88Sr+ Ion,” Science 306(5700) 1355-1358 (2004).10.1126/science.1105497Search in Google Scholar PubMed

[5] K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub- Doppler molecular lines using a 3.4−μm difference-frequencygeneration spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80, 032518 (2009)10.1103/PhysRevA.80.032518Search in Google Scholar

[6] A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Exp. 13(22) 9029-9038 (2005).10.1364/OPEX.13.009029Search in Google Scholar PubMed

[7] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-combbased remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5) 290-298 (2014).10.1364/OPTICA.1.000290Search in Google Scholar

[8] S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photon. 4, 760-766 (2010).Search in Google Scholar

[9] G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Exp. 20(6) 6631-6643 (2012).10.1364/OE.20.006631Search in Google Scholar PubMed

[10] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335-1337 (2008).Search in Google Scholar

[11] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555 (2011).10.1126/science.1193968Search in Google Scholar PubMed

[12] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214-1217 (2007).Search in Google Scholar

[13] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full Stabilization of a Microresonator-Based Optical Frequency Comb,” Phys. Rev. Lett. 101, 053903 (2008).Search in Google Scholar

[14] P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave Spanning Tunable Frequency Comb from a Microresonator,” Phys. Rev. Lett. 107, 063901 (2011).Search in Google Scholar

[15] W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Optics Lett. 36, 2290 (2011)10.1364/OL.36.002290Search in Google Scholar PubMed

[16] I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Exp. 20 (6), 6604-6609 (2012)10.1364/OE.20.006604Search in Google Scholar PubMed

[17] C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picque, and T. J. Kippenberg, “Midinfrared optical frequency combs at 2.5 μmbased on crystalline microresonators” Nat. Comm. 4, 1345 (2013)10.1038/ncomms2335Search in Google Scholar PubMed PubMed Central

[18] A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low Threshold Optical Oscillations in a Whispering Gallery Mode CaF2 Resonator,” Phys. Rev. Lett. 93, 243905 (2004).Search in Google Scholar

[19] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L.Maleki, “Tunable Optical Frequency Comb with a Crystalline Whispering Gallery Mode Resonator,” Phys. Rev. Lett. 101, 093902 (2008)10.1103/PhysRevLett.101.093902Search in Google Scholar PubMed

[20] I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Optics Lett. 34, 878 (2009)10.1364/OL.34.000878Search in Google Scholar

[21] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37 (2010)10.1038/nphoton.2009.259Search in Google Scholar

[22] Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398 (2011)10.1364/OL.36.003398Search in Google Scholar PubMed

[23] A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L.Gaeta, “Chip-based frequency combswith sub-100 GHz repetition rates,” Opt. Lett. 37, 875 (2012)10.1364/OL.37.000875Search in Google Scholar PubMed

[24] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J.Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Pho ton. 5, 770-776 (2011).Search in Google Scholar

[25] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica, 1(3), 137-144 (2014).10.1364/OPTICA.1.000137Search in Google Scholar

[26] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4, 41 (2010).Search in Google Scholar

[27] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” 7, 597-607 (2013).Search in Google Scholar

[28] A. G. Griflth, R. K.W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Comm. 6, 6299 (2015).Search in Google Scholar

[29] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369-374 (2014).Search in Google Scholar

[30] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminumnitride microring resonator,” Opt. Lett. 38(15), 2810-2813 (2013).10.1364/OL.38.002810Search in Google Scholar PubMed

[31] H. Jung, K. Y. Fong, C. Xiong, and H. X. Tang, “Electrical tuning and switching of an optical frequency comb generated in aluminum nitride microring resonators,” 39 (1), 84-87 (2014).10.1364/OL.39.000084Search in Google Scholar PubMed

[32] H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator,” 1(6), 396-399 (2014).10.1364/OPTICA.1.000396Search in Google Scholar

[33] C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12, 3562 (2012).Search in Google Scholar

[34] W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100, 223501 (2012).Search in Google Scholar

[35] C. Xiong,W. Pernice, X. Sun, C. Schuck, K. Y Fong and H. X Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14 095014 (2012).10.1088/1367-2630/14/9/095014Search in Google Scholar

[36] P. M. Lundquist,W. P. Lin, Z. Y. Xu, G. K. Wong, E. D. Rippert, J. A. Helfrich, and J. B. Ketterson, “Ultraviolet second harmonic generation in radio-frequency sputter-deposited aluminum nitride thin films,” Appl. Phys. Lett. 65, 1085 (1994).Search in Google Scholar

[37] P. Gräupner, J. C. Pommier, A. Cachard and J. L. Coutaz, “Electrooptical effect in aluminumnitridewaveguides,” J. Appl. Phys. 71, 4136 (1992).Search in Google Scholar

[38] W. P. Lin, P. M. Lundquist, G. K. Wong, E. D. Rippert, and J. B. Ketterson, “Second order optical nonlinearities of radio frequency sputter-deposited AIN thin films,” Appl. Phys. Lett. 63, 2875-2877 (1993).Search in Google Scholar

[39] M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82, 075208 (2010).10.1103/PhysRevB.82.075208Search in Google Scholar

[40] J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, P. Carrier, and S.-H. Wei, “Band structure and fundamental optical transitions in wurtzite AlN,” Appl. Phys. Lett. 83, 5163 (2003).Search in Google Scholar

[41] Yoshitaka Taniyasu, Makoto Kasu, and Toshiki Makimoto, “An aluminiumnitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325-328 (2006).10.1038/nature04760Search in Google Scholar

[42] P. T. Lin, H. Jung, L. C. Kimerling, A. Agarwal, and H. X. Tang, “Low-loss aluminium nitride thin film for mid-infrared microphotonics,” Laser Photon. Rev. 8 (2), L23-L28 (2014).10.1002/lpor.201300176Search in Google Scholar

[43] G. A. Slack, R. A. Tanzilli. R.O. Pohl, and J.W. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids, 48 (7) 641-647 (1987).10.1016/0022-3697(87)90153-3Search in Google Scholar

[44] N. Watanabe, T. Kimoto, and J. Suda, “The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C,” J. Appl. Phys. 104, 106101 (2008).Search in Google Scholar

[45] V. V. Felmetsger, P. N. Laptev and R. J. Graham, “Deposition of ultrathin AlN films for high frequency electroacoustic devices,” J. Vac. Sci. Technol. A 29, 021014 (2011).10.1116/1.3554718Search in Google Scholar

[46] A. Saxler, P. Kung, C. J. Sun, E. Bigan, and M. Razeghi, “High quality aluminum nitride epitaxial layers grown on sapphire substrates,” Appl. Phys. Lett. 64, 339 (1994).Search in Google Scholar

[47] C. Schwab, J. F. P. Spronckb, A. Tokovininc, and D. A. Fischer, “Design of the CHIRON high-resolution spectrometer at CTIO,” Proc. SPIE 7735, 77354G, (2010).10.1117/12.856709Search in Google Scholar

[48] C. Schwab, J. F. P. Spronckb, A. Tokovininc, A. Szymkowiaka, M. Giguerea and D. A. Fischer, “Performance of the CHIRON highresolution Echelle spectrograph,” Proc. SPIE 8446, 84460B, (2012).10.1117/12.925108Search in Google Scholar

[49] C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express, 19, 10462 (2011).10.1364/OE.19.010462Search in Google Scholar PubMed

Received: 2015-10-22
Accepted: 2015-12-10
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 6.2.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0020/html
Scroll Up Arrow