Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

Lucia Caspani EMAIL logo , Christian Reimer , Michael Kues , Piotr Roztocki , Matteo Clerici , Benjamin Wetzel , Yoann Jestin , Marcello Ferrera , Marco Peccianti , Alessia Pasquazi , Luca Razzari , Brent E. Little , Sai T. Chu , David J. Moss and Roberto Morandotti
From the journal Nanophotonics


Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.


[1] W. H. Louisell, A. Yariv, and A. E. Siegman, "Quantum fluctuations and noise in parametric processes. I.," Phys. Rev. 124, 1646-1654 (1961).Search in Google Scholar

[2] D. N. Klyshko, "Coherent photon decay in a nonlinear medium," Pis’ma Zh. Eksp. Teor. Fiz. 6, 490 (1967).Search in Google Scholar

[3] S. A. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and O. N. Chunaev, "Quantum noise in parametric light amplifers," Pis’ma Zh. Eksp. Teor. Fiz. 6, 575-578 (1967).Search in Google Scholar

[4] S. E. Harris, M. K. Oshman, and R. L. Byer, "Observation of tunable optical parametric fluorescence," Phys. Rev. Lett. 18, 732-734 (1967).Search in Google Scholar

[5] D. Magde and H. Mahr, "Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 Å," Phys. Rev. Lett. 18, 905-907 (1967).Search in Google Scholar

[6] E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, "Waveguide-based OPO source of entangled photon pairs," New J. Phys. 11, 113042 (2009).Search in Google Scholar

[7] R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, "Monolithic source of photon pairs," Phys. Rev. Lett. 108, 153605 (2012).Search in Google Scholar

[8] K.-H. Luo, H. Herrmann, S. Krapick, B. Brecht, R. Ricken, V. Quiring, H. Suche, W. Sohler, and C. Silberhorn, "Direct generation of genuine single-longitudinal-mode narrowband photon pairs," New J. Phys. 17, 73039 (2015).Search in Google Scholar

[9] G. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008).Search in Google Scholar

[10] J. O’Brien, B. Patton, M. Sasaki, and J. Vučković, "Focus on integrated quantum optics," New J. Phys. 15, 035016 (2013).Search in Google Scholar

[11] A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-silicon waveguide quantum circuits," Science 320, 646-649 (2008).Search in Google Scholar

[12] A. Politi, J. C. F. Matthews, and J. L. O’Brien, "Shor’s quantum factoring algorithm on a photonic chip," Science 325, 1221 (2009).10.1126/science.1173731Search in Google Scholar PubMed

[13] H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, "Entanglement generation using silicon wire waveguide," Appl. Phys. Lett. 91, 201108 (2007).Search in Google Scholar

[14] S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, "Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators," Opt. Express 17, 16558-16570 (2009).10.1364/OE.17.016558Search in Google Scholar PubMed

[15] J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, "Quantum light from a whisperinggallery- mode disk resonator," Phys. Rev. Lett. 106, 113901 (2011).Search in Google Scholar

[16] S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, "Ultra-low power generation of twin photons in a compact silicon ring resonator," Opt. Express 20, 23100-23107 (2012).10.1364/OE.20.023100Search in Google Scholar PubMed

[17] N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, "A monolithically integrated polarization entangled photon pair source on a silicon chip," Sci. Rep. 2, 817 (2012).Search in Google Scholar

[18] S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, "On the genesis and evolution of integrated quantum optics," Laser Photon. Rev. 6, 115-143 (2012).Search in Google Scholar

[19] D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nature Phot. 7, 597-607 (2013).Search in Google Scholar

[20] L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, "Spontaneous four-wave mixing in microring resonators," Opt. Lett. 35, 3006 (2010).Search in Google Scholar

[21] M. J. Collins, M. J. Steel, T. F. Krauss, B. J. Eggleton, and A. S. Clark, "Photonic crystal waveguide sources of photons for quantum communication applications," IEEE J. Sel. Top. Quantum Electron. 21, 205-214 (2015).Search in Google Scholar

[22] K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).10.1038/nature01939Search in Google Scholar PubMed

[23] Z. Ou and Y. Lu, "Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons," Phys. Rev. Lett. 83, 2556-2559 (1999).Search in Google Scholar

[24] K. Garay-Palmett, Y. Jeronimo-Moreno, and a B. U’Ren, "Theory of cavity-enhanced spontaneous four wave mixing," Laser Phys. 23, 015201 (2013).Search in Google Scholar

[25] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, "Quantum repeaters based on atomic ensembles and linear optics," Rev. Mod. Phys. 83, 33-80 (2011).Search in Google Scholar

[26] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, "Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement," Opt. Express 21, 27826-27834 (2013).10.1364/OE.21.027826Search in Google Scholar PubMed

[27] R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, "Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 μm from a silicon coupled-resonator optical waveguide," Opt. Lett. 38, 2969-2971 (2013).Search in Google Scholar

[28] D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, "Micrometer-scale integrated silicon source of time-energy entangled photons," Optica 2, 88 (2015).10.1364/OPTICA.2.000088Search in Google Scholar

[29] C. Xiong, X. Zhang, A. Mahendra, J. He, D.-Y. Choi, C. J. Chae, D. Marpaung, A. Leinse, R. G. Heideman, M. Hoekman, C. G. H. Roeloffzen, R. M. Oldenbeuving, P. W. L. van Dijk, C. Taddei, P. H. W. Leong, and B. J. Eggleton, "Compact and reconfigurable silicon nitride time-bin entanglement circuit," Optica 2, 724 (2015).10.1364/OPTICA.2.000724Search in Google Scholar

[30] I. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, "Generation of multiphoton entangled quantum states by means of integrated frequency combs," Science 351, 1176-1180 (2016).Search in Google Scholar

[31] M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, "A versatile source of single photons for quantum information processing," Nat. Commun. 4, 1818 (2013).Search in Google Scholar

[32] C.-S. Chuu, G. Y. Yin, and S. E. Harris, "A miniature ultrabright source of temporally long, narrowband biphotons," Appl. Phys. Lett. 101, 051108 (2012).Search in Google Scholar

[33] F. Monteiro, a. Martin, B. Sanguinetti, H. Zbinden, and R. T. Thew, "Narrowband photon pair source for quantum networks," Opt. Express 22, 4371 (2014).10.1364/OE.22.004371Search in Google Scholar PubMed

[34] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke- Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, "Quantum correlations in optical angle-orbital angular momentum variables," Science 329, 662-665 (2010).Search in Google Scholar

[35] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, "Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities," Nature Phys. 7, 677-680 (2011).Search in Google Scholar

[36] I. Ali Khan and J. Howell, "Experimental demonstration of high two-photon time-energy entanglement," Phys. Rev. A 73, 031801 (2006).10.1103/PhysRevA.73.031801Search in Google Scholar

[37] I. Ali-Khan, C. Broadbent, and J. Howell, "Large-alphabet quantum key distribution using energy-time entangled bipartite states," Phys. Rev. Lett. 98, 060503 (2007).Search in Google Scholar

[38] M. Kolobov, "The spatial behavior of nonclassical light," Rev. Mod. Phys. 71, 1539-1589 (1999).10.1103/RevModPhys.71.1539Search in Google Scholar

[39] C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Integrated frequency comb source of heralded single photons," Opt. Express 22, 6535-6546 (2014).10.1364/OE.22.006535Search in Google Scholar PubMed

[40] W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, "Silicon-chip source of bright photon pairs," Opt. Express 23, 20884 (2015).10.1364/OE.23.020884Search in Google Scholar PubMed

[41] M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Demonstration of a stable ultrafast laser based on a nonlinear microcavity," Nat. Commun. 3, 765 (2012).Search in Google Scholar

[42] A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip," Opt. Express 21, 13333 (2013).Search in Google Scholar

[43] C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in IEEE International Conference on Computers, Systems and Signal Processing (1984), pp. 175-179.Search in Google Scholar

[44] W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature 299, 802-803 (1982).10.1038/299802a0Search in Google Scholar

[45] D. Dieks, "Communication by EPR devices," Phys. Lett. A 92, 271-272 (1982).Search in Google Scholar

[46] C. Reimer, M. Kues, L. Caspani, B. Wetzel, P. Roztocki, M. Clerici, Y. Jestin, M. Ferrera, M. Peccianti, A. Pasquazi, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, "Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip," Nat. Commun. 6, 8236 (2015).Search in Google Scholar

[47] Q. Lin, F. Yaman, and G. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007).Search in Google Scholar

[48] E. Brainis, "Four-photon scattering in birefringent fibers," Phys. Rev. A 79, 023840 (2009).10.1103/PhysRevA.79.023840Search in Google Scholar

[49] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773-R776 (1999).10.1103/PhysRevA.60.R773Search in Google Scholar

[50] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, "Qubit entanglement between ring-resonator photon-pair sources on a silicon chip," Nat. Commun. 6, 7948 (2015).Search in Google Scholar

[51] R. Raussendorf and H. J. Briegel, "A one-way quantum computer," Phys. Rev. Lett. 86, 5188-5191 (2001).Search in Google Scholar

[52] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. a. Nielsen, "Universal quantum computation with continuous-variable cluster states," Phys. Rev. Lett. 97, 110501 (2006).Search in Google Scholar

[53] J. Zhang and S. L. Braunstein, "Continuous-variable Gaussian analog of cluster states," Phys. Rev. A 73, 032318 (2006).10.1103/PhysRevA.73.032318Search in Google Scholar

[54] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).Search in Google Scholar

[55] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, "Ultra-large-scale continuous-variable cluster states multiplexed in the time domain," Nature Phot. 7, 982-986 (2013).Search in Google Scholar

[56] O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, "Multipartite continuous-variable entanglement from concurrent nonlinearities," Phys. Rev. A 70, 020302 (2004).10.1103/PhysRevA.70.020302Search in Google Scholar

[57] O. Pinel, P. Jian, R. M. de Araújo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, "Generation and characterization of multimode quantum frequency combs," Phys. Rev. Lett. 108, 083601 (2012).Search in Google Scholar

[58] J. Roslund, R. M. de Araújo, S. Jiang, C. Fabre, and N. Treps, "Wavelength-multiplexed quantum networks with ultrafast frequency combs," Nature Phot. 8, 109-112 (2013).Search in Google Scholar

[59] M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, "Parallel generation of quadripartite cluster entanglement in the optical frequency comb," Phys. Rev. Lett. 107, 030505 (2011).Search in Google Scholar

[60] M. Chen, N. C. Menicucci, and O. Pfister, "Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb," Phys. Rev. Lett. 112, 120505 (2014).Search in Google Scholar

Received: 2015-10-29
Accepted: 2016-2-23
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 6.12.2022 from
Scroll Up Arrow