Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Modeling Frequency Comb Sources

  • Feng Li , Jinhui Yuan EMAIL logo , Zhe Kang , Qian Li and P. K. A. Wai
From the journal Nanophotonics


Frequency comb sources have revolutionized metrology and spectroscopy and found applications in many fields. Stable, low-cost, high-quality frequency comb sources are important to these applications. Modeling of the frequency comb sources will help the understanding of the operation mechanism and optimization of the design of such sources. In this paper,we review the theoretical models used and recent progress of the modeling of frequency comb sources.


[1] Jones DJ, Diddams SA, Ranka JK, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 2000; 288:635-9.10.1126/science.288.5466.635Search in Google Scholar PubMed

[2] Udem T, Holzwarth R, Hänsch TW. Optical frequency metrology. Nature 2002; 416:233-7.10.1038/416233aSearch in Google Scholar PubMed

[3] Diddams SA, Bergquist JC, Jefferts SR, Oates CW. Standards of time and frequency at the outset of the 21st century. Science 2004; 306:1318-24.10.1126/science.1102330Search in Google Scholar PubMed

[4] Schliesser A, Picqué N, Hänsch TW. Mid-infrared frequency combs. Nat Photon 2012; 6:440-9.10.1038/nphoton.2012.142Search in Google Scholar

[5] Hänsch TW, Picqué N. Laser spectroscopy and frequency combs. JPCS 2013; 467:012001.10.1088/1742-6596/467/1/012001Search in Google Scholar

[6] Telle HR, Steinmeyer G, Dunlop AE. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl Phys B 1999; 69:327-32.10.1007/s003400050813Search in Google Scholar

[7] Cundiff ST. Phase stabilization of ultrashort optical pulses. J Phys D: Appl Phys 2002; 35:R43-R59.10.1088/0022-3727/35/8/201Search in Google Scholar

[8] Morgner U, Ell R, Metzler G, et al. Nonlinear optics with phasecontrolled pulses in the sub-two-cycle regime. Phys Rev Lett 2001; 86:5462-5.10.1103/PhysRevLett.86.5462Search in Google Scholar PubMed

[9] Ramond TM, Diddams SA, Hollberg L, Bartels A. Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecondoscillator. Opt Lett 2002; 27:1842-4.10.1364/OL.27.001842Search in Google Scholar

[10] Hitachi K, Ishizawa A, Nishikawa T, Asobe M, Sogawa T. Carrierenvelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide. Opt Express 2014; 22:1629-35.10.1364/OE.22.001629Search in Google Scholar PubMed

[11] Udem T, Reichert J, Holzwarth R, Hänsch TW. Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode- Locked Laser. Phys Rev Lett 1999; 82:3568-71.10.1103/PhysRevLett.82.3568Search in Google Scholar

[12] Reichert J, Holzwarth R, Udem T, Hänsch TW. Measuring the frequency of light with mode-locked lasers. Opt Commun 1999; 172:59-68.10.1016/S0030-4018(99)00491-5Search in Google Scholar

[13] Jones DJ, Cundiff ST, Fortier TM, Hall JL, Ye J. Carrier-envelope phase stabilization of single and multiple femtosecond lasers. in F. X. Kartner, ed. Few-Cycle Laser Pulse Generation and Its Applications. Springer-Verlag Berlin Heidelberg, 2004, 317-43.10.1007/978-3-540-39849-3_8Search in Google Scholar

[14] Yu TJ,NamCH. Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method. Prog Quantum Electron 2012; 36:541-65.10.1016/j.pquantelec.2012.10.002Search in Google Scholar

[15] Cundiff ST, Ye J. Colloquium: Femtosecond optical frequency combs. Rev Mod Phys 2003; 75:325-42.10.1103/RevModPhys.75.325Search in Google Scholar

[16] Ye J, Cundiff ST. Femtosecond optical frequency comb: Principle, Operation and Applications. Norwell, MA, Springer US, 2005.10.1007/b102450Search in Google Scholar

[17] Diddams SA. The evolving optical frequency comb [Invited]. J Opt Soc Am B 2010; 27:B51-B62.10.1364/JOSAB.27.000B51Search in Google Scholar

[18] Ell R, Morgner U, Kärtner FX, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt Lett 2001; 26:373-5.10.1364/OL.26.000373Search in Google Scholar

[19] Chong A, Liu H, Nie B, et al. Pulse generation without gainbandwidth limitation in a laser with self-similar evolution. Opt Express 2012; 20:14213-20.10.1364/OE.20.014213Search in Google Scholar PubMed PubMed Central

[20] Dudley JM, Genty G, Coen S. Supercontinuumgeneration in photonic crystal fiber. Rev Mod Phys 2006; 78:1135-84.10.1103/RevModPhys.78.1135Search in Google Scholar

[21] Del’Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R, Kippenberg TJ. Optical frequency comb generation from a monolithic microresonator. Nature 2007; 450:1214-7.10.1038/nature06401Search in Google Scholar PubMed

[22] Savchenkov AA, Matsko AB, Strekalov D, Mohageg M, Ilchenko VS, Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys Rev Lett 2004; 93:243905.10.1103/PhysRevLett.93.243905Search in Google Scholar PubMed

[23] Agha IH, Okawachi Y, Gaeta AL. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt Express 2009; 17:16209-15.10.1364/OE.17.016209Search in Google Scholar PubMed

[24] Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photon 2010; 4:41-5.10.1038/nphoton.2009.236Search in Google Scholar

[25] Morgner U, Kärtner FX, Cho SH, et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt Lett 1999; 24:411-3.10.1364/OL.24.000411Search in Google Scholar PubMed

[26] Brabec T, Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys 2000; 72:545-91.10.1103/RevModPhys.72.545Search in Google Scholar

[27] Lan Y, Song Y, Hu M, Liu B, Chai L, Wang C. Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser. Opt Lett 2013; 38:1292-4.10.1364/OL.38.001292Search in Google Scholar PubMed

[28] Kärtner FX, Morgner U, Schibli T, et al. Few-cycle pulses directly from a laser. in F. X. Kärtner, ed. Few-Cycle Laser Pulse Generation and Its Applications. Springer-Verlag Berlin Heidelberg, 2004, 73-136.10.1007/978-3-540-39849-3_2Search in Google Scholar

[29] Koechner W. Solid-state laser engineering. New York, USA, Springer New York, 2006.Search in Google Scholar

[30] Fermann ME, Hartl I. Ultrafast fiber laser technology. IEEE J Sel Topics Quantum Electron 2009; 15:191-206.10.1109/JSTQE.2008.2010246Search in Google Scholar

[31] Richardson DJ, Nilsson J, Clarkson WA. High power fiber lasers: current status and future perspectives [Invited]. J Opt Soc Am B 2010; 27:B63-B92.10.1364/JOSAB.27.000B63Search in Google Scholar

[32] Fermann ME, Hartl I. Ultrafast fibre lasers. Nat Photon 2013; 7:868-74.10.1038/nphoton.2013.280Search in Google Scholar

[33] Chong A, Renninger WH, Wise FW. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt Lett 2007; 32:2408-10.10.1364/OL.32.002408Search in Google Scholar

[34] Zhao LM, Bartnik AC, Tai QQ,Wise FW. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. Opt Lett 2013; 38:1942-4.10.1364/OL.38.001942Search in Google Scholar PubMed PubMed Central

[35] Li X, Zou W, Chen J. 41.9 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate. Opt Lett 2014; 39:1553-6.10.1364/OL.39.001553Search in Google Scholar PubMed

[36] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat Photon 2013; 7:842-5.10.1038/nphoton.2013.304Search in Google Scholar

[37] Akhmediev N, Ankiewicz A. Dissipative solitons in the complex Ginzburg-Landau and Swift-Hohenberg equations. in N. Akhmediev, and A. Ankiewicz, eds. Dissipative solitons. Springer Berlin Heidelberg, 2005, 17-34.10.1007/b11728Search in Google Scholar

[38] Kutz JN. Mode-locked soliton lasers. SIAM review 2006; 48:629-78.10.1137/S0036144504446357Search in Google Scholar

[39] Soto-Crespo JM, Akhmediev N. Composite solitons and two pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation. Phys Rev E 2002; 66:066610.10.1103/PhysRevE.66.066610Search in Google Scholar PubMed

[40] Haus HA, Fujimoto JG, Ippen EP. Structures for additive pulse mode locking. J Opt Soc Am B 1991; 8:2068-76.10.1364/JOSAB.8.002068Search in Google Scholar

[41] Haus HA, Fujimoto JG, Ippen EP. Analytic theory of additive pulse and Kerr lens mode locking. IEEE J Quantum Electron 1992; 28:2086-96.10.1109/3.159519Search in Google Scholar

[42] Haus HA. Mode-locking of lasers. IEEE J Sel Topics Quantum Electron 2000; 6:1173-85.10.1109/2944.902165Search in Google Scholar

[43] Akhmediev N, Ankiewicz A. Solitons of the complex Ginzburg- Landau equation. in S. Trillo, and W. Torruellas, eds. Spatial Solitons. Springer-Verlag Berlin Heidelberg, 2001, 311-41.10.1007/978-3-540-44582-1_12Search in Google Scholar

[44] Wang S, Docherty A, Marks BS, Menyuk CR. Comparison of numerical methods for modeling laser mode locking with saturable gain. J Opt Soc Am B 2013; 30:3064-74.10.1364/JOSAB.30.003064Search in Google Scholar

[45] Trebino R, Delong KW, Fittinghoff DN, et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency resolved optical gating. Rev Sci Instrum 1997; 68:3277-95.10.1063/1.1148286Search in Google Scholar

[46] Agrawal GP. Nonlinear Fiber Optics (Fifth Edition). Boston, Academic Press, 2013.10.1016/B978-0-12-397023-7.00011-5Search in Google Scholar

[47] Renninger W, Chong A, Wise FW. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers. IEEE J Sel Topics Quantum Electron 2012; 18:389-98.10.1109/JSTQE.2011.2157462Search in Google Scholar

[48] Moores JD. On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term. Opt Commun 1993; 96:65-70.10.1016/0030-4018(93)90524-9Search in Google Scholar

[49] Ding E, Shlizerman E, Kutz JN. Generalized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg- Landau equation. IEEE J Quantum Electron 2011; 47:705-14.10.1109/JQE.2011.2112337Search in Google Scholar

[50] Akhmediev NN, Afanasjev VV, Soto-Crespo JM. Singularities and special soliton solutions of the cubic-quintic complex Ginzburg- Landau equation. Phys Rev E 1996; 53:1190-201.10.1103/PhysRevE.53.1190Search in Google Scholar PubMed

[51] Soto-Crespo JM, Akhmediev NN, Afanasjev VV. Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation. J Opt Soc Am B 1996; 13:1439-49.10.1364/JOSAB.13.001439Search in Google Scholar

[52] van Saarloos W, Hohenberg PC. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Physica D 1992; 56:303-67.10.1016/0167-2789(92)90175-MSearch in Google Scholar

[53] Marcq P, Chaté H, Conte R. Exact solutions of the one dimensional quintic complex Ginzburg-Landau equation. Physica D 1994; 73:305-17.10.1016/0167-2789(94)90102-3Search in Google Scholar

[54] Renninger WH, Chong A, Wise FW. Dissipative solitons in normal-dispersion fiber lasers. Phys Rev A 2008; 77:023814.10.1103/PhysRevA.77.023814Search in Google Scholar

[55] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers. Nat Photon 2012; 6:84-92.10.1038/nphoton.2011.345Search in Google Scholar

[56] Chang W, Ankiewicz A, Soto-Crespo JM, Akhmediev N. Dissipative soliton resonances. Phys Rev A 2008; 78:023830.10.1103/PhysRevA.78.023830Search in Google Scholar

[57] Grelu P, Chang W, Ankiewicz A, Soto-Crespo JM, Akhmediev N. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators. J Opt Soc Am B 2010; 27:2336-41.10.1364/JOSAB.27.002336Search in Google Scholar

[58] Wang S, Docherty A, Marks BS, Menyuk CR. Boundary tracking algorithms for determining of the stability of mode locked pulses. J Opt Soc Am B 2014; 31:2914-30.10.1364/JOSAB.31.002914Search in Google Scholar

[59] Mortag D, Wandt D, Morgner U, Kracht D, Neumann J. Sub-80- fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 μm. Opt Express 2011; 19:546-51.10.1364/OE.19.000546Search in Google Scholar PubMed

[60] Kharenko DS, Podivilov EV, Apolonski AA, Babin SA. 20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator. Opt Lett 2012; 37:4104-6.10.1364/OL.37.004104Search in Google Scholar PubMed

[61] Aguergaray C, Runge A, Erkintalo M, Broderick NGR. Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability. Opt Lett 2013; 38:2644-6.10.1364/OL.38.002644Search in Google Scholar PubMed

[62] North T, Rochette M. Raman-induced noise like pulses in a highly nonlinear and dispersive all-fiber ring laser. Opt Lett 2013; 38:890-2.10.1364/OL.38.000890Search in Google Scholar PubMed

[63] Runge AFJ, Aguergaray C, Broderick NGR, Erkintalo M. Raman rogue waves in a partially mode-locked fiber laser. Opt Lett 2014; 39:319-22.10.1364/OL.39.000319Search in Google Scholar PubMed

[64] Haus HA, Tamura K, Nelson LE, Ippen EP. Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment. IEEE J Quantum Electron 1995; 31:591-8.10.1109/3.364417Search in Google Scholar

[65] Oktem B, Ülgüdür C, Ilday FÖ. Soliton-similariton fibre laser. Nat Photon 2010; 4:307-11.10.1038/nphoton.2010.33Search in Google Scholar

[66] Nie B, Pestov D,Wise FW, Dantus M. Generation of 42-fs and 10- nJ pulses from a fiber laser with self-similar evolution in the gain segment. Opt Express 2011; 19:12074-80.10.1364/OE.19.012074Search in Google Scholar PubMed PubMed Central

[67] Zaviyalov A, Iliew R, Egorov O, Lederer F. Lumped versus distributed description of mode-locked fiber lasers. J Opt Soc Am B 2010; 27:2313-21.10.1364/JOSAB.27.002313Search in Google Scholar

[68] Menyuk CR. Pulse propagation in an elliptically birefringent Kerr medium. IEEE J Quantum Electron 1989; 25:2674-82.10.1109/3.40656Search in Google Scholar

[69] Chen CJ, Wai PKA, Menyuk CR. Soliton fiber ring laser. Opt Lett 1992; 17:417-9.10.1364/OL.17.000417Search in Google Scholar PubMed

[70] Li F, Ding E, Kutz JN, Wai PKA. Dual transmission filters for enhanced energy in mode-locked fiber lasers. Opt Express 2011; 19:23408-19.10.1364/OE.19.023408Search in Google Scholar PubMed

[71] Ding E, Renninger WH, Wise FW, Grelu P, Shlizerman E, Kutz JN. High-energy passive mode-locking of fiber lasers. Int J Opt 2012; 2012:354156.10.1155/2012/354156Search in Google Scholar PubMed PubMed Central

[72] Leblond H, Salhi M, Hideur A, Chartier T, Brunel M, Sanchez F. Experimental and theoretical study of the passively mode locked ytterbium-doped double-clad fiber laser. Phys Rev A 2002; 65:063811.10.1103/PhysRevA.65.063811Search in Google Scholar

[73] Salhi M, Leblond H, Sanchez F. Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear polarization rotation. Phys Rev A 2003; 67:013802.10.1103/PhysRevA.67.013802Search in Google Scholar

[74] Martel G, Chédot C, Hideur A, Grelu P. Numerical maps for fiber lasers mode locked with nonlinear polarization evolution: comparison with semi-analytical models. Fiber Integr Opt 2008; 27:320-40.10.1080/01468030802266064Search in Google Scholar

[75] Kobtsev S, Smirnov S, Kukarin S, Turitsyn S. Mode-locked fiber lasers with significant variability of generation regimes. Opt Fiber Technol 2014; 20:615-20.10.1016/j.yofte.2014.07.009Search in Google Scholar

[76] Aguergaray C, Broderick NGR, Erkintalo M, Chen JSY, Kruglov V. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror. Opt Express 2012; 20:10545.10.1364/OE.20.010545Search in Google Scholar PubMed

[77] Erkintalo M, Aguergaray C, Runge A, Broderick NGR. Environmentally stable all-PM all-fiber giant chirp oscillator. Opt Express 2012; 20:22669.10.1364/OE.20.022669Search in Google Scholar PubMed

[78] Aguergaray C, Hawker R, Runge AFJ, Erkintalo M, Broderick NGR. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser. Appl Phys Lett 2013; 103.10.1063/1.4821776Search in Google Scholar

[79] Runge AFJ, Aguergaray C, Provo R, Erkintalo M, Broderick NGR. All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror. Opt Fiber Technol 2014; 20:657-65.10.1016/j.yofte.2014.07.010Search in Google Scholar

[80] Runge AFJ, Broderick NGR, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2015; 2:36-9.10.1364/OPTICA.2.000036Search in Google Scholar

[81] Nelson LE, Jones DJ, Tamura K, Haus HA, Ippen EP. Ultrashortpulse fiber ring lasers. Appl Phys B 1997; 65:277-94.10.1007/s003400050273Search in Google Scholar

[82] Town GE, Akhmediev NN, Soto-Crespo JM. Optical fiber soliton lasers. in K. Porsezian, and V. C. Kuriakose, eds. Optical Solitons. Springer Berlin Heidelberg, 2002, 265-97.10.1007/3-540-36141-3_13Search in Google Scholar

[83] Tamura K, Ippen EP, Haus HA. Pulse dynamics in stretched-pulse fiber lasers. Appl Phys Lett 1995; 67:158-60.10.1063/1.114652Search in Google Scholar

[84] Turitsyn SK, Bale BG, Fedoruk MP. Dispersion-managed solitons in fibre systems and lasers. Phys Rep 2012; 521:135-203.10.1016/j.physrep.2012.09.004Search in Google Scholar

[85] Buckley JR, Wise FW, Ilday FÖ, Sosnowski T. Femtosecond fiber lasers with pulse energies above 10 nJ. Opt Lett 2005; 30:1888-90.10.1364/OL.30.001888Search in Google Scholar

[86] Ma D, Cai Y, Zhou C, Zong W, Chen L, Zhang Z. 37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate. Opt Lett 2010; 35:2858-60.10.1364/OL.35.002858Search in Google Scholar PubMed

[87] Ilday FÖ, Buckley J, Kuznetsova L, Wise FW. Generation of 36- femtosecond pulses from a ytterbium fiber laser. Opt Express 2003; 11:3550-4.10.1364/OE.11.003550Search in Google Scholar

[88] Cheng Z, Li H, Wang P. Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb doped mode-locked fiber lasers. Opt Express 2015; 23:5972-81.10.1364/OE.23.005972Search in Google Scholar PubMed

[89] Zhang H, Zhang S, Li X, Han M. Optimal design of higher energy dissipative-soliton fiber lasers. Opt Commun 2015; 335:212-7.10.1016/j.optcom.2014.09.031Search in Google Scholar

[90] Im JH, Choi SY, Rotermund F, Yeom D-I. All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber. Opt Express 2010; 18:22141-6.10.1364/OE.18.022141Search in Google Scholar PubMed

[91] Buckley JR, Clark SW, Wise FW. Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation. Opt Lett 2006; 31:1340-2.10.1364/OL.31.001340Search in Google Scholar

[92] Zhou X, Yoshitomi D, Kobayashi Y, Torizuka K. Generation of 28- fs pulses from a mode-locked ytterbium fiber oscillator. Opt Express 2008; 16:7055-9.10.1364/OE.16.007055Search in Google Scholar PubMed

[93] Kruglov VI, Peacock AC, Harvey JD, Dudley JM. Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. J Opt Soc Am B 2002; 19:461-9.10.1364/JOSAB.19.000461Search in Google Scholar

[94] Bale BG, Wabnitz S. Strong spectral filtering for a mode-locked similariton fiber laser. Opt Lett 2010; 35:2466-8.10.1364/OL.35.002466Search in Google Scholar PubMed

[95] Renninger WH, Chong A,Wise FW. Self-similar pulse evolution in an all-normal-dispersion laser. Phys Rev A 2010; 82:021805(R).10.1103/PhysRevA.82.021805Search in Google Scholar PubMed PubMed Central

[96] Tamura K, Nelson LE, Haus Ha, Ippen EP. Soliton versus nonsoliton operation of fiber ring lasers. Appl Phys Lett 1994; 64:149-51.10.1063/1.111547Search in Google Scholar

[97] Genty G, Kinsler P, Kibler B, Dudley JM. Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides. Opt Express 2007; 15:5382-7.10.1364/OE.15.005382Search in Google Scholar PubMed

[98] Farnum ED, Kutz JN. Master mode-locking theory for fewfemtosecond pulses. Opt Lett 2010; 35:3033-5.10.1364/OL.35.003033Search in Google Scholar PubMed

[99] Leblond H, Mihalache D. Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys Rep 2013; 523:61-126.10.1016/j.physrep.2012.10.006Search in Google Scholar

[100] Kutz JN, Farnum E. Solitons and ultra-short optical waves: the short-pulse equation versus the nonlinear Schrödinger equation. in H. E. Hernández-Figueroa, E. Recami, and M. Zamboni-Rached, eds. Non-Diffracting Waves.Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2014, 451-71.10.1002/9783527671519.ch22Search in Google Scholar

[101] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology. Nature 2001; 414:509-13.10.1038/35107000Search in Google Scholar PubMed

[102] Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys 2009; 81:163-234.10.1103/RevModPhys.81.163Search in Google Scholar

[103] Karasawa N, Nakamura S, Nakagawa N, et al. Comparison between theory and experiment of nonlinear propagation for a-few cycle and ultrabroadband optical pulses in a fused-silica fiber. IEEE J Quantum Electron 2001; 37:398-404.10.1109/3.910449Search in Google Scholar

[104] Kolesik M, Wright EM, Moloney JV. Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers. Appl Phys B 2004; 79:293-300.10.1007/s00340-004-1551-1Search in Google Scholar

[105] Tyrrell JCA, Kinsler P, New GHC. Pseudospectral spatialdomain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion. J Mod Opt 2005; 52:973-86.10.1080/09500340512331334086Search in Google Scholar

[106] Leblond H, Mihalache D. Few-optical-cycle solitons: Modified Korteweg-de Vries sine-Gordon equation versus other non-slowly-varying-envelope-approximation models. Phys Rev A 2009; 79:063835.10.1103/PhysRevA.79.063835Search in Google Scholar

[107] Leblond H, Grelu P, Mihalache D. Models for supercontinuum generation beyond the slowly-varying-envelope approximation. Phys Rev A 2014; 90:053816.10.1103/PhysRevA.90.053816Search in Google Scholar

[108] Farnum ED, Kutz JN. Dynamics of a low-dimensional model for short pulse mode locking. Photonics 2015; 2:865-82.10.3390/photonics2030865Search in Google Scholar

[109] Ilday FÖ, Buckley JR, Lim H, Wise FW, Clark WG. Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser. Opt Lett 2003; 28:1365-7.10.1364/OL.28.001365Search in Google Scholar PubMed

[110] Li F, Wai PKA, Kutz JN. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities. J Opt Soc Am B 2010; 27:2068-77.10.1364/JOSAB.27.002068Search in Google Scholar

[111] Fu X, Kutz JN. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. Opt Express 2013; 21:6526-37.10.1364/OE.21.006526Search in Google Scholar PubMed

[112] Li F, Wai PKA. Energy enhancement in mode-locked fiber lasers by using multiple nonlinear optical fiber loop mirrors. Chin Opt Lett 2014; 12:S21407.10.3788/COL201412.S21407Search in Google Scholar

[113] Boscolo S, Turitsyn SK, Finot C. Amplifier similariton fiber laser with nonlinear spectral compression. Opt Lett 2012; 37:4531-3.10.1364/OL.37.004531Search in Google Scholar PubMed

[114] Planas SA,Mansur NLP, Cruz CHB, Fragnito HL. Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt Lett 1993; 18:699-701.10.1364/OL.18.000699Search in Google Scholar

[115] Liang R, Zhou X, Zhang Z, Qin Z, Li H, Liu Y. Numerical investigation on spectral compression of femtosecond soliton in a dispersion-increasing fiber. Opt Fiber Technol 2009; 15:438-41. 10.1016/j.yofte.2009.07.003Search in Google Scholar

[116] Chuang H-P, Huang C-B.Wavelength-tunable spectral compression in a dispersion-increasing fiber. Opt Lett 2011; 36:2848-50.10.1364/OL.36.002848Search in Google Scholar PubMed

[117] Andresen ER, Thřgersen J, Keiding SR. Spectral compression of femtosecond pulses in photonic crystal fibers. Opt Lett 2005; 30:2025-7.10.1364/OL.30.002025Search in Google Scholar PubMed

[118] Li M, Li Q, Spectral compression of chirped Gaussian pulse in nonlinear optical fibers with exponentially increasing dispersion, in Nonlinear Optics, 2015, p. NW4A.20.10.1364/NLO.2015.NW4A.20Search in Google Scholar

[119] Li F, Li Q, Yuan J, Wai PKA. Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression. Opt Express 2014; 22:27339-54.10.1364/OE.22.027339Search in Google Scholar PubMed

[120] Diddams SA, Jones DJ, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett 2000; 84:5102-5.10.1103/PhysRevLett.84.5102Search in Google Scholar PubMed

[121] Alfano RR, Shapiro SL. Emission in the region 4000 to 7000 Ĺ via four-photon coupling in glass. Phys Rev Lett 1970; 24:584-7.10.1103/PhysRevLett.24.584Search in Google Scholar

[122] Beaud P, Hodel W, Zysset B, Weber H. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J Quantum Electron 1987; 23:1938-46.10.1109/JQE.1987.1073262Search in Google Scholar

[123] Islam MN, Sucha G, Bar-Joseph I, Wegener M, Gordon JP, Chemla DS. Femtosecond distributed soliton spectrum in fibers. J Opt Soc Am B 1989; 6:1149-58.10.1364/JOSAB.6.001149Search in Google Scholar

[124] Islam MN, Sucha G, Bar-Joseph I, Wegener M, Gordon JP, Chemla DS. Broad bandwidths from frequency-shifting solitons in fibers. Opt Lett 1989; 14:370-2.10.1364/OL.14.000370Search in Google Scholar PubMed

[125] Ranka JK,Windeler RS, Stentz AJ. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 2000; 25:25-7.10.1364/OL.25.000025Search in Google Scholar

[126] Graydon O. Nonlinear optics: Supercontinuum on a chip. Nat Photon 2014; 8:266.Search in Google Scholar

[127] LauR KW, Lamont MRE, Griffith AG, Okawachi Y, Lipson M, Gaeta AL. Octave-spanning mid-infrared supercontinuum generation in silicon nanowave guides. Opt Lett 2014; 39:4518-21.10.1364/OL.39.004518Search in Google Scholar PubMed

[128] Singh N, Hudson DD, Eggleton BJ. Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. Opt Express 2015; 23:17345-54.10.1364/OE.23.017345Search in Google Scholar PubMed

[129] OhDY, Sell D, Lee H, Yang KY, Diddams SA, Vahala KJ. Supercontinuum generation in an on-chip silica waveguide. Opt Lett 2014; 39:1046-8.10.1364/OL.39.001046Search in Google Scholar PubMed

[130] Biancalana F, Skryabin DV, Russell PSJ. Four-wave mixing instabilities in photonic-crystal and tapered fibers. Phys Rev E 2003; 68:046603.10.1103/PhysRevE.68.046603Search in Google Scholar PubMed

[131] Dudley JM, Genty G, Eggleton BJ. Harnessing and control of optical rogue waves in supercontinuum generation. Opt Express 2008; 16:3644-51.10.1364/OE.16.003644Search in Google Scholar

[132] Frosz MH. Validation of input-noise model for simulations of supercontinuum generation and rogue waves. Opt Express 2010; 18:14778-87.10.1364/OE.18.014778Search in Google Scholar PubMed

[133] Mussot A, Lantz E, Maillotte H, Sylvestre T, Finot C, Pitois S. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt Express 2004; 12:2838-43.10.1364/OPEX.12.002838Search in Google Scholar

[134] Lin C, Stolen RH. New nanosecond continuum for excited-state spectroscopy. Appl Phys Lett 1976; 28:216.10.1063/1.88702Search in Google Scholar

[135] Alfano RR. The supercontinuum laser source, 2006.10.1007/b106776Search in Google Scholar

[136] Stolen RH, Lee C, Jain RK. Development of the stimulated Raman spectrum in single-mode silica fibers. J Opt Soc Am B 1984; 1:652-7.10.1364/JOSAB.1.000652Search in Google Scholar

[137] Baldeck P, Alfano R. Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. J Lightwave Technol 1987; 5:1712-5.10.1109/JLT.1987.1075465Search in Google Scholar

[138] Ilev I, Kumagai H, Toyoda K, Koprinkov I. Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. Applied optics 1996; 35:2548-53.10.1364/AO.35.002548Search in Google Scholar PubMed

[139] Heidt AM. Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers. J Opt SocAm B 2010; 27:550-9.10.1364/JOSAB.27.000550Search in Google Scholar

[140] Hooper LE, Mosley PJ, Muir AC, Wadsworth WJ, Knight JC. Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt Express 2011; 19:4902-7.10.1364/OE.19.004902Search in Google Scholar PubMed

[141] Heidt AM, Hartung A, Bosman GW, et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all normal dispersion photonic crystal fibers. Opt Express 2011; 19:3775-87.10.1364/OE.19.003775Search in Google Scholar PubMed

[142] Heidt AM, Rothhardt J, Hartung A, et al. High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber. Opt Express 2011; 19:13873-9.10.1364/OE.19.013873Search in Google Scholar PubMed

[143] Al-Kadry A, Li L, Amraoui ME, North T, Messaddeq Y, Rochette M. Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires. Opt Lett 2015; 40:4687-90.10.1364/OL.40.004687Search in Google Scholar PubMed

[144] Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Opt Express 2004; 12:2027-32.10.1364/OPEX.12.002027Search in Google Scholar PubMed

[145] Tse MLV, Horak P, Poletti F, et al. Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles. Opt Express 2006; 14:4445-51.10.1364/OE.14.004445Search in Google Scholar PubMed

[146] Dudley JM, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt Lett 2002; 27:1180-2.10.1364/OL.27.001180Search in Google Scholar PubMed

[147] Solli DR, Ropers C, Jalali B. Active control of rogue waves for stimulated supercontinuum generation. Phys Rev Lett 2008; 101:233902.10.1103/PhysRevLett.101.233902Search in Google Scholar PubMed

[148] Cheung KKY, Zhang C, Zhou Y, Wong KKY, Tsia KK.Manipulating supercontinuumgeneration by minute continuous wave. Opt Lett 2011; 36:160-2.10.1364/OL.36.000160Search in Google Scholar PubMed

[149] Li Q, Li F, Wong KKY, Lau APT, Tsia KK, Wai PKA. Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation. Opt Express 2011; 19:13757-69.10.1364/OE.19.013757Search in Google Scholar PubMed

[150] Sørensen ST, Larsen C, Møller U, Moselund PM, Thomsen CL, Bang O. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation. J Opt Soc Am B 2012; 29:2875-85.10.1364/JOSAB.29.002875Search in Google Scholar

[151] Lu F, Knox WH. Low noise wavelength conversion of femtosecond pulses with dispersion micro-managed holey fibers. Opt Express 2005; 13:8172-8.10.1364/OPEX.13.008172Search in Google Scholar

[152] Vanvincq O, Barviau B, Mussot A, Bouwmans G, Quiquempois Y, Kudlinski A. Significant reduction of power fluctuations at the long-wavelength edge of a supercontinuum generated in solidcore photonic bandgap fibers. Opt Express 2010; 18:24352-60.10.1364/OE.18.024352Search in Google Scholar PubMed

[153] Eggleton BJ, Luther-Davies B, Richardson K. Chalcogenide photonics. Nat Photon 2011; 5:141-8.10.1038/nphoton.2011.309Search in Google Scholar

[154] Luther-Davies B. Flexible chalcogenide photonics. Nat Photon 2014; 8:591-3.10.1038/nphoton.2014.169Search in Google Scholar

[155] Martínez A, Blasco J, Sanchis P, et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett 2010; 10:1506-11. 10.1021/nl9041017Search in Google Scholar PubMed

[156] Zhang L, Agarwal AM, Kimerling LC, Michel J. Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics 2013; 3:247-68.10.1515/nanoph-2013-0020Search in Google Scholar

[157] Kang Z, Yuan J, Zhang X, et al. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide. Sci Rep 2014; 4:7177.10.1038/srep07177Search in Google Scholar PubMed PubMed Central

[158] Koos C, Vorreau P, Vallaitis T, et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat Photon 2009; 3:216-9.10.1038/nphoton.2009.25Search in Google Scholar

[159] Yin L, Lin Q, Agrawal GP. Soliton fission and supercontinuum generation in silicon waveguides. Opt Lett 2007; 32:391-3.10.1364/OL.32.000391Search in Google Scholar PubMed

[160] Yin L, Agrawal GP. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt Lett 2007; 32:2031-3.10.1364/OL.32.002031Search in Google Scholar PubMed

[161] Bristow A.D, Rotenberg N, van Driel HM. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm. Appl Phys Lett 2007; 90:191104.Search in Google Scholar

[162] Lin Q, Painter OJ, Agrawal GP. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt Express 2007; 15:16604-44.10.1364/OE.15.016604Search in Google Scholar PubMed

[163] Pearl S, Rotenberg N, van Driel HM. Three photon absorption in silicon for 2300-3300 nm. Appl Phys Lett 2008; 93:131102.10.1063/1.2991446Search in Google Scholar

[164] Gai X, Yu Y, Kuyken B, et al. Nonlinear absorption and refraction in crystalline silicon in the mid-infrared. Laser Photon Rev 2013; 7:1054-64.10.1002/lpor.201300103Search in Google Scholar

[165] Kuyken B, Ideguchi T, Holzner S, et al. An octave-spanning midinfrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat Commun 2015; 6:6310.10.1038/ncomms7310Search in Google Scholar PubMed PubMed Central

[166] Kippenberg TJ, Spillane SM, Vahala KJ. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys Rev Lett 2004; 93:083904.10.1103/PhysRevLett.93.083904Search in Google Scholar PubMed

[167] Foster MA, Levy JS, Kuzucu O, Saha K, Lipson M, Gaeta AL. Silicon-based monolithic optical frequency comb source. Opt Express 2011; 19:14233.10.1364/OE.19.014233Search in Google Scholar PubMed

[168] Moss DJ, Morandotti R, Gaeta AL, Lipson M. New CMOScompatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photon 2013; 7:597-607.10.1038/nphoton.2013.183Search in Google Scholar

[169] Zhang L, Mu J, Singh V, Agarwal AM, Kimerling LC, Michel J. Intra-cavity dispersion of microresonators and its engineering for octave-spanning Kerr frequency comb generation. IEEE J Sel Topics Quantum Electron 2014; 20:5900207.Search in Google Scholar

[170] Grifith AG, Lau RKW, Cardenas J, et al. Silicon-chip midinfrared frequency comb generation. Nat commun 2015; 6:6299.10.1038/ncomms7299Search in Google Scholar PubMed

[171] Del’Haye P, Coillet A, Loh W, Beha K, Papp SB, Diddams SA. Phase steps and resonator detuning measurements in microresonator frequency combs. Nat commun 2015; 6:5668.10.1038/ncomms6668Search in Google Scholar PubMed

[172] Del’Haye P, Herr T, Gavartin E, Gorodetsky ML, Holzwarth R, Kippenberg TJ. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett 2011; 107:063901.10.1103/PhysRevLett.107.063901Search in Google Scholar PubMed

[173] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photon 2012; 6:480-7.10.1038/nphoton.2012.127Search in Google Scholar

[174] Wang CY, Herr T, Del’Haye P, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat commun 2013; 4:1345.10.1038/ncomms2335Search in Google Scholar PubMed PubMed Central

[175] Pfeifle J, Coillet A, Henriet R, et al. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys Rev Lett 2015; 114:093902.10.1103/PhysRevLett.114.093902Search in Google Scholar PubMed

[176] Ruehl A, Martin MJ, Cossel KC, et al. Ultrabroadband coherent supercontinuum frequency comb. Phys Rev A 2011; 84:011806(R).10.1103/PhysRevA.84.011806Search in Google Scholar

[177] Kippenberg TJ, Holzwarth R, Diddams SA. Microresonatorbased optical frequency combs. Science 2011; 332:555-60.10.1126/science.1193968Search in Google Scholar PubMed

[178] Lamont MRE, Okawachi Y, Gaeta AL. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt Lett 2013; 38:3478-81.10.1364/OL.38.003478Search in Google Scholar PubMed

[179] Coen S, Haelterman M. Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber. Phys Rev Lett 1997; 79:4139-42.10.1103/PhysRevLett.79.4139Search in Google Scholar

[180] Matsko AB, Savchenkov AA, Maleki L. Normal group-velocity dispersion Kerr frequency comb. Opt Lett 2012; 37:43-5.10.1364/OL.37.000043Search in Google Scholar PubMed

[181] Coen S, Erkintalo M. Universal scaling laws of Kerr frequency combs. Opt Lett 2013; 38:1790-2.10.1364/OL.38.001790Search in Google Scholar PubMed

[182] Erkintalo M, Coen S. Coherence properties of Kerr frequency combs. Opt Lett 2014; 39:283-6.10.1364/OL.39.000283Search in Google Scholar PubMed

[183] Herr T, Brasch V, Jost JD, et al. Temporal solitons in optical microresonators. Nat Photon 2014; 8:145-52.10.1038/nphoton.2013.343Search in Google Scholar

[184] Leo F, Coen S, Kockaert P, Gorza S-P, Emplit P, Haelterman M. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat Photon 2010; 4:471-6.10.1038/nphoton.2010.120Search in Google Scholar

[185] Jang JK, Erkintalo M, Murdoch SG, Coen S. Ultraweak longrange interactions of solitons observed over astronomical distances. Nat Photon 2013; 7:657-63.10.1038/nphoton.2013.157Search in Google Scholar

[186] Herr T, Brasch V, Jost JD, et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys Rev Lett 2014; 113:123901.10.1103/PhysRevLett.113.123901Search in Google Scholar

[187] Jang JK, Erkintalo M, Coen S, Murdoch SG. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat Commun 2015; 6:1-7.10.1038/ncomms8370Search in Google Scholar

[188] Jang JK, Erkintalo M, Luo K, Oppo G-L, Coen S, Murdoch SG. Controlled merging and annihilation of localized dissipative structures in an AC-driven damped nonlinear Schrödinger system. 2015:5.10.1088/1367-2630/18/3/033034Search in Google Scholar

[189] Luo K, Xu Y, Erkintalo M, Murdoch SG. Resonant radiation in synchronously pumped passive Kerr cavities. Opt Lett 2015; 40:427-30.10.1364/OL.40.000427Search in Google Scholar

[190] Haelterman M, Trillo S, Wabnitz S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt Commun 1992; 91:401-7.10.1016/0030-4018(92)90367-ZSearch in Google Scholar

[191] Coen S, Randle HG, Sylvestre T, Erkintalo M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Opt Lett 2013; 38:37-9.10.1364/OL.38.000037Search in Google Scholar PubMed

[192] Lugiato L, Lefever R. Spatial dissipative structures in passive optical systems. Phys Rev Lett 1987; 58:2209-11.10.1103/PhysRevLett.58.2209Search in Google Scholar PubMed

[193] Matsko AB, Savchenkov AA, Liang W, Ilchenko VS, Seidel D, Maleki L. Mode-locked Kerr frequency combs. Opt Lett 2011; 36:2845-7.10.1364/OL.36.002845Search in Google Scholar PubMed

[194] Zhang L, Bao C, Singh V, et al. Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt Lett 2013; 38:5122-5.10.1364/OL.38.005122Search in Google Scholar PubMed

[195] Chembo YK, Menyuk CR. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A 2013; 87:1-4.Search in Google Scholar

[196] Hansson T, Modotto D, Wabnitz S. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt Lett 2014; 39:6747-50.10.1364/OL.39.006747Search in Google Scholar PubMed

[197] Lau RKW, Lamont MRE, Okawachi Y, Gaeta AL. Effects of multiphoton absorption on parametric comb generation in silicon mi croresonators. Opt Lett 2015; 40:2778-81.10.1364/OL.40.002778Search in Google Scholar PubMed

[198] Bao C, Zhang L, Kimerling LC, Michel J, Yang C. Soliton breathing induced by stimulated Raman scattering and self-steepening in octave-spanning Kerr frequency comb generation. Opt Express 2015; 23:18665-70.10.1364/OE.23.018665Search in Google Scholar PubMed

[199] Chembo YK, Yu N. Modal expansion approach to opticalfrequency- comb generation with monolithic whispering-gallerymode resonators. Phys Rev A 2010; 82:033801.10.1103/PhysRevA.82.033801Search in Google Scholar

[200] Chembo YK, Strekalov DV, Yu N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys Rev Lett 2010; 104:103902.10.1103/PhysRevLett.104.103902Search in Google Scholar PubMed

[201] Matsko AB, Liang W, Savchenkov AA, Maleki L. Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. Opt Lett 2013; 38:525-7.10.1364/OL.38.000525Search in Google Scholar PubMed

[202] Hansson T, Modotto D, Wabnitz S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt Commun 2014; 312:134-6.10.1016/j.optcom.2013.09.017Search in Google Scholar

[203] Peregrine D. Water waves, nonlinear Schrödinger equations and their solutions. J Austral Math Soc Ser B 1983; 25:16-43.10.1017/S0334270000003891Search in Google Scholar

[204] Coste C. Nonlinear Schrödinger equation and superfluid hydrodynamics. The European Physical Journal B 1998; 1:245-53.10.1007/s100510050178Search in Google Scholar

[205] Carretero-González R, Frantzeskakis DJ, Kevrekidis PG. Nonlinearwaves in Bose-Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 2008; 21:R139-R202.10.1088/0951-7715/21/7/R01Search in Google Scholar

[206] Bao W. The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics. Dynamics in models of coarsening, coagulation, condensation and quantization. National University of Singapore, 2007, 141.10.1142/9789812770226_0003Search in Google Scholar

Received: 2015-9-30
Accepted: 2016-2-23
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 7.2.2023 from
Scroll Up Arrow