Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter June 17, 2016

Spectral Methods for Determining the Stability and Noise Performance of Passively Modelocked Lasers

  • Curtis R. Menyuk EMAIL logo and Shaokang Wang
From the journal Nanophotonics

Abstract

We describe spectral or dynamical methods that can be used to determine the stability and noise performance of modelocked lasers.We first review methods that have been used to date to theoretically and computationally study passively modelocked lasers, contrasting evolutionary and dynamical approaches and their application to full, averaged, and reduced models. We then develop the spectral methods and show how they can be used to determine the stability and to calculate the timing jitter and power spectral density for any averaged model with any equilibrium pulse shape. We review work that has been done on soliton lasers using soliton perturbation theory from this dynamical perspective, and we contrast the simplicity and generality of our methods to prior work. We close with a discussion of how to extend our approach from averaged models to full models.

References

[1] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol. 9, 271-283 (1991).Search in Google Scholar

[2] A. G. Fox and T. Li, “Resonant Modes in aMaser Interferometer,” (1961).10.1002/j.1538-7305.1961.tb01625.xSearch in Google Scholar

[3] J. A. Fleck, “Ultrashort-Pulse Generation by Q-Switched Lasers,” Physical Review B 1, 84-100 (1970).10.1103/PhysRevB.1.84Search in Google Scholar

[4] A. E. Siegman, Lasers (University Science Books, 1986).Search in Google Scholar

[5] M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers: Technology and Applications (CRC Press, 2002).10.1201/9780203910207Search in Google Scholar

[6] F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer Science & Business Media, 2004).10.1007/b88427Search in Google Scholar

[7] C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, “Soliton fiber ring laser,” Optics Letters 17, 417 (1992).10.1364/OL.17.000417Search in Google Scholar PubMed

[8] A. Kim, J. Kutz, and D. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE Journal of Quantum Electronics 36, 465-471 (2000).Search in Google Scholar

[9] F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbiumfiber laser,” Optics Express 11, 3550 (2003).10.1364/OE.11.003550Search in Google Scholar

[10] E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized Master Equation for High-Energy Passive Mode-Locking: The Sinusoidal Ginzburg-Landau Equation,” IEEE Journal of Quantum Electronics 47, 705-714 (2011).Search in Google Scholar

[11] A. Chong,W. H. Renninger, and F.W.Wise, “Properties of normaldispersion femtosecond fiber lasers,” Journal of the Optical Society of America B 25, 140 (2008).10.1364/JOSAB.25.000140Search in Google Scholar

[12] W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser [Invited].” Optics express 19, 22496-501 (2011).10.1364/OE.19.022496Search in Google Scholar PubMed PubMed Central

[13] M. Baumgartl, B. Ortaç, J. Limpert, and A. Tünnermann, “Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers,” Applied Physics B 107, 263-274 (2012).Search in Google Scholar

[14] L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Optics Express 22, 6996-7006 (2014).Search in Google Scholar

[15] D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and a. C. Ferrari, “74-fs Nanotube-Mode-Locked Fiber Laser,” Applied Physics Letters 101, 17-19 (2012).Search in Google Scholar

[16] S. Husaini and R. G. Bedford, “Graphene saturable absorber for high power semiconductor disk laser mode-locking,” Applied Physics Letters 104, 161107 (2014).10.1063/1.4872258Search in Google Scholar

[17] E. Avrutin, J. Marsh, and E. Portnoi, “Monolithic and multigigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications,” Optoelectronics, IEE Proceedings 147, 251-278 (2000).Search in Google Scholar

[18] E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nature Photonics 1, 395-401 (2007).Search in Google Scholar

[19] C. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. Heckl, C. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for high-power oscillators: Design guidelines and damage thresholds,” IEEE Journal of Selected Topics in QuantumElectronics 18, 29-41 (2012).Search in Google Scholar

[20] A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photonics 7, 842-845 (2013).10.1038/nphoton.2013.304Search in Google Scholar

[21] J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. T. Cundiff, W. H. Knox, P. Holmes, and M. Weinstein, “Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector,” Journal of the Optical Society of America B 14, 2681 (1997).10.1364/JOSAB.14.002681Search in Google Scholar

[22] A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Optics Express 17, 9537 (2009).10.1364/OE.17.009537Search in Google Scholar

[23] I. P. Christov and V. D. Stoev, “Kerr-lens mode-locked laser model: role of space time effects,” Journal of the Optical Society of America B 15, 1960 (1998).Search in Google Scholar

[24] M. Y. Sander, J. Birge, A. Benedick, H. M. Crespo, and F. X. Kärtner, “Dynamics of dispersion managed octave-spanning titanium: sapphire lasers,” Journal of the Optical Society of America B 26, 743 (2009).Search in Google Scholar

[25] W. H. Renninger and F. W. Wise, “Spatiotemporal soliton laser,” Optica 1, 101 (2014).10.1364/OPTICA.1.000101Search in Google Scholar

[26] J. N. Kutz, “Mode-locked soliton lasers,” SIAM Review 48, 629-678 (2006).10.1137/S0036144504446357Search in Google Scholar

[27] N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer Science & Business Media, 2005).10.1007/b11728Search in Google Scholar

[28] N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).Search in Google Scholar

[29] H. A. Haus, “Mode-locking of lasers,” IEEE Journal on Selected Topics in Quantum Electronics 6, 1173-1185 (2000).10.1109/2944.902165Search in Google Scholar

[30] O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers for the case of a nonlinear complexpropagation coeflcient,” Journal of the Optical Society of America B 2, 753 (1985).10.1364/JOSAB.2.000753Search in Google Scholar

[31] H. A. Haus, “Theory of mode locking with a fast saturable absorber,” Journal of Applied Physics 46, 3049 (1975).10.1063/1.321997Search in Google Scholar

[32] C. C. Lee and T. R. Schibli, “Intrinsic power oscillations generated by the backaction of continuum on solitons and its implications on the transfer functions of a mode-locked laser,” Phys. Rev. Lett. 112, 223903 (2014).Search in Google Scholar

[33] G. Biondini, “The dispersion-managed ginzburg-landau equation and its application to femtosecond lasers,” Nonlinearity 21, 2849 (2008).10.1088/0951-7715/21/12/007Search in Google Scholar

[34] J. D. Moores, “On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term,” Optics Communications 96, 65-70 (1993).10.1016/0030-4018(93)90524-9Search in Google Scholar

[35] J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, “Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation,” Journal of the Optical Society of America B 13, 1439 (1996).10.1364/JOSAB.13.001439Search in Google Scholar

[36] T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master mode-locking equation,” Journal of the Optical Society of America B 19, 740 (2002).10.1364/JOSAB.19.000740Search in Google Scholar

[37] J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S.Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg- Landau equation in the case of normal dispersion,” Physical Review E 55, 4783-4796 (1997).Search in Google Scholar

[38] N. Akhmediev, J. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Physics Letters A 372, 3124-3128 (2008).Search in Google Scholar

[39] H. Leblond, M. Salhi, A. Hideur, T. Chartier, M. Brunel, and F. Sanchez, “Experimental and theoretical study of the passively mode-locked ytterbium-doped double-clad fiber laser,” Physical Review A 65, 063811 (2002).10.1103/PhysRevA.65.063811Search in Google Scholar

[40] M. J. Ablowitz, T. P. Horikis, and B. Ilan, “Solitons in dispersionmanaged mode-locked lasers,” Physical Review A 77, 033814 (2008).10.1103/PhysRevA.77.033814Search in Google Scholar

[41] F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE Journal of Selected Topics in Quantum Electronics 2, 540-556 (1996).Search in Google Scholar

[42] J. Proctor and J. N. Kutz, “Nonlinear mode-coupling for passive mode-locking: application of waveguide arrays, dual-core fibers, and/or fiber arrays.” Optics express 13, 8933-50 (2005).10.1364/OPEX.13.008933Search in Google Scholar PubMed

[43] R. Paschotta, “Noise of mode-locked lasers (Part I): numerical model,” Applied Physics B 79, 153-162 (2004).Search in Google Scholar

[44] R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Applied Physics B 79, 163-173 (2004).Search in Google Scholar

[45] H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE Journal of Quantum Electronics 29, 983-996 (1993).10.1109/3.206583Search in Google Scholar

[46] C. Antonelli, J. Chen, and F. X. Kärtner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Optics Express 15, 5919 (2007).10.1364/OE.15.005919Search in Google Scholar PubMed

[47] B. G. Bale and J. N. Kutz, “Variational method for mode-locked lasers,” Journal of the Optical Society of America B 25, 1193 (2008).10.1364/JOSAB.25.001193Search in Google Scholar

[48] B. R.Washburn,W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Optics Express 13, 10622 (2005).10.1364/OPEX.13.010622Search in Google Scholar

[49] N. Newbury and B. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE Journal of Quantum Electronics 41, 1388-1402 (2005).10.1109/JQE.2005.857657Search in Google Scholar

[50] F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” Journal of the Optical Society of America B 27, 2068 (2010).10.1364/JOSAB.27.002068Search in Google Scholar

[51] S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” Journal of the Optical Society of America B 14, 2099 (1997).10.1364/JOSAB.14.002099Search in Google Scholar

[52] P. Kuchment, Floquet Theory for Partial Differential Equations, Operator Theory: Advances and Applications (Birkhäuser Basel, 2012).Search in Google Scholar

[53] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Westview Press, 1994).10.1063/1.4823332Search in Google Scholar

[54] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos (Academic Press, 2013).10.1016/B978-0-12-382010-5.00015-4Search in Google Scholar

[55] J. C. Maxwell, On the stability of the motion of Saturn’s Rings (Macmillan & Company, 1859).Search in Google Scholar

[56] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” Journal of the Optical Society of America B 8, 2068 (1991).10.1364/JOSAB.8.002068Search in Google Scholar

[57] H. Haus and M. Islam, “Theory of the soliton laser,” IEEE Journal of Quantum Electronics 21, 1172-1188 (1985).10.1109/JQE.1985.1072805Search in Google Scholar

[58] L. Jiang, M. Grein, H. Haus, and E. Ippen, “Noise of mode-locked semiconductor lasers,” IEEE Journal of Selected Topics in Quantum Electronics 7, 159-167 (2001).10.1109/2944.954125Search in Google Scholar

[59] J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Optics Express 16, 636 (2008). 10.1364/OE.16.000636Search in Google Scholar PubMed

[60] E. P. Ippen, H. A. Haus, and L. Y. Liu, “Additive pulse mode locking,” Journal of the Optical Society of America B 6, 1736 (1989).10.1364/JOSAB.6.001736Search in Google Scholar

[61] C. Jirauschek, U. Morgner, and F. X. Kärtner, “Variational analysis of spatio-temporal pulse dynamics in dispersive Kerr media,” Journal of the Optical Society of America B 19, 1716 (2002).10.1364/JOSAB.19.001716Search in Google Scholar

[62] S. Wang, A. Docherty, B. S. Marks, and C. R. Menyuk, “Boundary tracking algorithms for determining the stability of modelocked pulses,” Journal of the Optical Society of America B 31, 2914 (2014).10.1364/JOSAB.31.002914Search in Google Scholar

[63] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, 2006).Search in Google Scholar

[64] G. Helmberg, Introduction to Spectral Theory in Hilbert Space (American Elsevier Publishing Company, 1969).Search in Google Scholar

[65] D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Physical Review A 42, 5689-5694 (1990).10.1103/PhysRevA.42.5689Search in Google Scholar

[66] A. Friedman, Foundations of Modern Analysis, Dover Books on Mathematics Series (Dover, 1970).Search in Google Scholar

[67] S. Wang, C. R. Menyuk, L. Sinclair, I. Coddington, and N. R. Newbury, “Soliton Wake Instability in a SESAM Modelocked Fiber Laser,” in “CLEO: 2014,” (OSA, Washington, D.C., 2014), p. SW3E.4.10.1364/CLEO_SI.2014.SW3E.4Search in Google Scholar

[68] J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Optics Letters 11, 665 (1986).10.1364/OL.11.000665Search in Google Scholar

[69] J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Optics Letters 15, 1351 (1990).10.1364/OL.15.001351Search in Google Scholar

[70] R. Schmeissner, J. Roslund, C. Fabre, and N. Treps, “Spectral Noise Correlations of an Ultrafast Frequency Comb,” Physical Review Letters 113, 263906 (2014).10.1103/PhysRevLett.113.263906Search in Google Scholar PubMed

[71] J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” Journal of the Optical Society of America B 9, 91 (1992).10.1364/JOSAB.9.000091Search in Google Scholar

[72] F. X. Kärtner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and shortening in actively mode-locked lasers,” Journal of the Optical Society of America B 12, 486 (1995).10.1364/JOSAB.12.000486Search in Google Scholar

[73] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, andMathematical Tables, Applied mathematics series (Dover Publications, 1964).Search in Google Scholar

[74] C. R. Menyuk, J. K. Wahlstrand, J. Willits, R. P. Smith, T. R. Schibli, and S. T. Cundiff, “Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling,” Opt. Express 15, 6677-6689 (2007).10.1364/OE.15.006677Search in Google Scholar

[75] J. K. Wahlstrand, J. T. Willits, C. R. Menyuk, and S. T. Cundiff, “The quantum-limited comb lineshape of a mode-locked laser: Fundamental limits on frequency uncertainty,” Opt. Express 16, 18624-18630 (2008).10.1364/OE.16.018624Search in Google Scholar PubMed

[76] J. Nijhof, W. Forysiak, and N. Doran, “The averaging method for finding exactly periodic dispersion-managed solitons,” IEEE Journal of Selected Topics in Quantum Electronics 6, 330-336 (2000).Search in Google Scholar

[77] R. Holzlohner, V. Grigoryan, C. Menyuk, and W. Kath, “Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization,” Journal of Lightwave Technology 20, 389-400 (2002).Search in Google Scholar

[78] B. Deconinck and J. Nathan Kutz, “Computing spectra of linear operators using the Floquet-Fourier-Hill method,” Journal of Computational Physics 219, 296-321 (2006).10.1016/j.jcp.2006.03.020Search in Google Scholar

Received: 2016-1-7
Accepted: 2016-3-23
Published Online: 2016-6-17
Published in Print: 2016-6-1

© 2016

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 21.3.2023 from https://www.degruyter.com/document/doi/10.1515/nanoph-2016-0033/html
Scroll Up Arrow