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Abstract: The common feature of various plasmonic 
schemes is their ability to confine optical fields of sur-
face plasmon polaritons (SPPs) into subwavelength vol-
umes and thus achieve a large enhancement of linear 
and nonlinear optical properties. This ability, however, is 
severely limited by the large ohmic loss inherent to even 
the best of metals. However, in the mid- and far-infrared 
ranges of the spectrum, there exists a viable alternative to 
metals – polar dielectrics and semiconductors, in which 
dielectric permittivity (the real part) turns negative in the 
Reststrahlen region. This feature engenders the so-called 
surface phonon polaritons, capable of confining the field 
in a way akin to their plasmonic analogs, the SPPs. Since 
the damping rate of polar phonons is substantially less 
than that of free electrons, it is not unreasonable to expect 
that phononic devices may outperform their plasmonic 
counterparts. Yet a more rigorous analysis of the compara-
tive merits of phononics and plasmonics reveals a more 
nuanced answer, namely, that while phononic schemes 
do exhibit narrower resonances and can achieve a very 
high degree of energy concentration, most of the energy is 
contained in the form of lattice vibrations so that enhance-
ment of the electric field and, hence, the Purcell factor is 
rather small compared to what can be achieved with metal 
nanoantennas. Still, the sheer narrowness of phononic 
resonances is expected to make phononics viable in appli-
cations where frequency selectivity is important.

Keywords: plasmonics; nanophotonics; phonons; 
mid-infrared.

1  �Introduction
The discipline of optics, for most of its existence, has 
relied on a very limited variety of optical materials, mostly 
dielectrics with a narrow range of refractive indices, from 
about 1.38 for MgF2 to about 2.4 for TiO2 in the visible and 4 
for Ge in the near- and mid-infrared (IR) [1]. Consequently, 
the minimum size of optical components has been his-
torically limited by the diffraction limit to about λ/n, i.e. 
a few 100 nm, making the density of optical integration 
much lower than the density of electronic integration. 
In the course of the last decade and a half, the situation 
slowly started to change as the palette of optical materi-
als has been expanded to include materials with negative 
permittivity (i.e. imaginary refractive index), including 
mostly metals but also doped semiconductors. As a result, 
a new discipline, plasmonics, has emerged, free of the 
constraints imposed by the diffraction limit [2, 3]. At about 
the same time, the optics community realized that by com-
bining subwavelength parts made from materials with dif-
ferent signs of permittivity, entirely new artificial media 
with properties unattainable in natural materials can be 
synthesized.

These media have been named “metamaterials,” 
and a number of exciting potential applications for 
them, ranging from superlensing to optical cloaking, 
have emerged [4–6]. However, after a few giddy years of 
unlimited promise, the research in metamaterials and 
plasmonics has hit a wall as the community has started 
to recognize the obvious fact that ohmic loss in the metal 
prevents plasmonic and metamaterial devices from prop-
erly performing their functions [7, 8]. Once this unfortu-
nate yet unescapable fact settled in, the research has 
slowly migrated toward areas where the loss may not be 
the deciding factor (plasmonic sensors) [9] or where it can 
in fact be useful (photocatalysis, thermal photovoltaics, 
and others) [10–13]. It was also suggested that loss can 
be mitigated by optical amplification [14–17], but soon, it 
was shown that the loss is simply too large for that and 
that the introduction of a gain medium only increases 
noise [18–20]. Hence, the glimmer of hope for plasmonics 
and metamaterials use in such applications as integrated 
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optics still remains in discovering or developing new low 
loss material systems.

While in the visible and near-infrared (IR) range it is 
very difficult to find an alternative to the noble metal (and 
not for the lack of trying), the situation in the mid-IR to 
THz range appears to be far more promising [21–26]. The 
scattering rates in highly doped semiconductors are on 
the order of 1013 s−1, i.e. about an order of magnitude less 
than in the metals. However, the plasma frequency is also 
significantly less; i.e. the skin depth in semiconductors is 
much larger than in metals. As the field penetrates deep 
inside the semiconductors, it gets absorbed and the result-
ing effective loss in the doped semiconductors is actually 
larger than in metals [27–29].

Nevertheless, there exists yet another pathway leading 
to extensively low loss, negative permittivity materials in 
the IR region – using the motion of ions in place of free 
carriers [30–39]. Just like the oscillations of free carriers 
in metal or semiconductors, the collective oscillations of 
ions in polar dielectrics (commonly referred to as optical 
phonons) engender oscillating space charges. These oscil-
lations, in turn, can couple (hybridize) with the electro-
magnetic field (photons) and the combined modes are 
known as phonon polaritons [40, 41]. The optical phonons 
are characterized by the transverse optical phonon reso-
nance frequency ωTO(k) (typically, dependence on the wave 
vector k is rather weak) and the dispersion of the dielectric 
constant can be modeled by the Lorentzian oscillator,
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where ε∞ is the high-frequency (optical) dielectric constant 
of the material, γ is the damping (or momentum relaxa-
tion) rate, and the plasma frequency 2 *2

0/ ,P rNe Mω ε ε∞=  
where N is the density of polar bonds, e* is their effective 
charge, and Mr is the reduced mass. The real part of the 
dielectric constant becomes equal to 0 at the frequency 

of 2 2 ,LO TO Pω ω ω= +  called the frequency of longitudi-
nal optical phonons. For a typical phononic material, 
SiC [42, 43] ωTO ≈ 2π × 23.9 THz, ωLO ≈ 2π × 29.2  THz, 
ωP ≈ 2π × 16.7 THz and γ ≈ 1.1 ps−1. Now, as one can see from 
Figure 1A, in the frequency range ωTO < ω < ωLO the real part 
of εr is negative and the propagating electromagnetic waves 
are not supported in this so-called Reststrahlen region. 
However, the interface modes, called surface phonon 
polaritons (SPhPs), do exist at the interface between the 
two dielectrics, one with positive and one with negative 
dielectric constants, as shown in Figure  1B, where the 
propagating SPhP is shown, and Figure 1C, depicting the 
localized SPhP mode. Both localized and propagating 

modes look very similar to their counterparts in the metal 
structures – surface plasmon polaritons (SPPs), which is 
not surprising given that the dispersion of the metal (or 
doped semiconductor) looks similar,
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and can be obtained from (1) by simply setting the TO 
resonance frequency to zero. The dispersion of the metal 
(or doped semiconductor) is also shown (not necessarily 
to scale) as a dotted line in Figure 1A.

The most attractive feature of SPhPs, which has given 
impetus to the whole new field of “phononics,” is that the 
damping rate γ of optical phonons, caused by the anhar-
monicity, is typically as slow as 1012 s−1 (scattering time is 
on the scale of a picosecond). This compares very favorably 
with the damping rate of SPPs, caused by the phonon and 
surface-assisted absorption γf, which happens to be on the 
order of 1014 s−1 in metals and 1013 s−1 in highly doped semi-
conductors. Hence, it seems logical that in the IR region, the 
SPhPs should possess multiple advantages over the SPPs in 
terms of propagation length, lifetime, and field enhance-
ment. Indeed, a significant amount of work in phononics 
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Figure 1: Origin of surface phonon polaritons (SPhPs).
(A) Dispersion of phonons and plasmons. The regions A, B, and C 
correspond to three different ways to achieve a resonant mode: 
dielectric resonator, SphP, and SPP, respectively. (B) Propagating 
SPhP. (C) Localized SPhP.
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has been performed in the course of the last decade, and 
many of the plasmonic experiments, previously performed 
in the visible range, have been successfully implemented 
in the mid-IR region using phononic structures [31–39, 44].

While the results obtained in the aforementioned 
references clearly demonstrate that narrow resonances 
are indeed achievable in phononic structures, it is not 
clear that the degree of field enhancement is superior to 
what can be attained with metals, or doped semiconduc-
tors. The presence of the resonance frequency ωTO in the 
denominator of (1) vs. the absence of it in (2) is expected 
to make the difference, but how big this difference is and 
what are the physical reasons for it have not been inves-
tigated in detail. In this work, we present a simple and 
physically transparent theory that elucidates the differ-
ence between phononic and plasmonic materials using 
nothing but the energy conservation considerations.

2  �Energy balance in polar dielectric 
structures

Let us consider the energy balance inside a mode con-
tained within some volume of dielectric with relative 
permittivity εr(ω). If the characteristic dimension of the 
volume is a, then the electric field can be written as roughly 
E sin(πx/a)sin(ωt) and the magnetic field as H cos(πx/a)
cos(ωt). Then, from Maxwell’s equation ∇ × H = iωε0εrE, 
one can obtain the order-or-magnitude relation between 
the magnitudes of two fields,
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The time-averaged electric energy density can be 
written as
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where rε′  is the real part of dielectric constant while the 
time-averaged magnetic energy density is
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where ( )Re .rn ε=  If one considers the lowest order mode 
in the cavity, with a = λ/2n, and neglects the dispersion, 
one immediately obtains the energy conservation relation 

3 3 .E MU d r U d r〈 〉 = 〈 〉∫ ∫

But the time averaged picture does not properly rep-
resent the energy balance in the mode since the electric 
energy includes contributions oscillating 90 degrees out 
of phase with each other (in-phase and quadrature com-
ponents). According to the Lorentz oscillator model, used 
to derive (1), the relative displacement of ions is
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where 2 2 2 2 2tan /( ) ,TOϕ γ ω ω ω= −  and the velocity of this 
motion is
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Then, we obtain the expressions for the kinetic
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and potential
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energy densities inside the volume. The potential energy 
then can be split into two parts as
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The first part is
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where rε′  is the real part of the dielectric constant (1) and 
the second part
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has the same amplitude as kinetic energy (8) but its phase 
is shifted by 90 degrees. The total electric energy density 
can then be found as
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is the sum of energy stored in the electric field proper, 
2

0
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2EFU Eε=  and the potential energy associated with 

oscillations of valence electrons, 2
0

1 ( 1) .
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Neglecting a small phase shift ϕ in (14) amounts to a very 
small error on the scale of 2 2/ .pγ ω  Averaging (13) over 
time immediately leads to (4).

Now, we can see that the energy oscillating roughly in 
phase [i.e. as sin2(ωt–ϕ)] with the electric field, which can 
be referred to as either “in phase” or “potential”, is

	 1 2( ) ( ) ( ) ( )I P PU t U t U t U t∞= + + � (15)

and has three components. The first of them, U∞(t), is 
entirely static as it has no frequency dependence. The 
second component, UP1(t), is only weakly resonant and 
dominates the frequency response in the normal disper-
sion region. The third component, UP2(t), whose ampli-
tude is equal to the amplitude of kinetic energy UK(t), is 
very dispersive and becomes the dominant factor in the 
anomalous dispersion region. This breakdown is shown 
in Figure 2A and C.

Note that in the anomalous region, when ω > ωTO, 
UP1(t) becomes negative but the total potential energy (10) 
is of course always positive. The energy that oscillates 
roughly 90 degrees out of phase with the electric field [i.e. 
as cos2(ωt–ϕ)] can be referred to as either “quadrature” or 
kinetic in the Lagrangian mechanics sense

	 ( ) ( ) ( ),Q K MU t U t U t= + � (16)

and it has two components, the actual kinetic energy of 
the ions, UK(t), which is strongly dispersive, and the mag-
netic energy, UM(t), as shown in Figure 2B and D. Whether 
kinetic of magnetic energy dominates depends on the 
dimensions of the mode. Comparing (8) with (5) immedi-
ately yields
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This is the most interesting result indicating that the 
ratio of two energies depends only on the size of the mode 
relative to the plasma wavelength.

Expression (17) is extremely important from 
the point of view of energy dissipation of the mode. 
The one and only dissipation mechanism is velocity 
damping with the rate γ, which means that the kinetic 
energy gets damped with the rate 2γ. Since, on average, 
UQ(t) = UK(t) + UM(t) is one half of total energy, and mag-
netic energy is obviously not dissipating, the overall 
effective energy damping rate is [29]
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This expression shows the major difference between 
the plasmonic and phononic subwavelength structures. 
For metals, the plasma wavelength is about 140–150 nm; 
hence, for metallic structures operating in the mid-IR, 
the characteristic dimension may be substantially 
smaller than the operating (resonant) wavelength λ0 but 
still an order of magnitude larger than λP/2an∞ and the 
effective loss can be orders of magnitude smaller than 
the metal damping rate γ ~ 1014 s−1. Strictly speaking, 
when one operates far from plasma frequency (λ  λP) 
and the kinetic energy of electrons is small, it is prefer-
able not to invoke the term “plasmon” and instead use 
the terms “metal waveguides” or ”metal nanoanten-
nas.” For phononic structures, on the other hand, the 
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Figure 2: Energy breakdown in the polar dielectric material excited 
by the electromagnetic field for four different times within oscilla-
tion period T: (A) t = 0, (B) t = T/4, (C) t = T/2, (D) t = 3T/4. 
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operational wavelength is always much shorter than the 
plasma wavelength, meaning that in the subwavelength 
phononic structure, the effective loss is always equal 
to the phonon damping rate (which is, as mentioned 
above, two orders of magnitude less than the electrons 
damping rate in the metal). Therefore, despite the lower 
momentum damping rate, it is far from obvious that 
SPhPs offer any significant advantage over the metallic 
structures.

3  �Energy balance for self-sustained 
oscillation

Now, the self-sustaining eigenmodes can exist only when 
the in-phase and quadrature energies are equal to each 
other, i.e. 3 3( ) ( )I QU t d U t d〈 〉 = 〈 〉∫ ∫r r  or
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Note that we have kept two equal dispersive terms on 
both sides of (19) in order to obtain solutions from energy 
balance considerations. Altogether, expression (19) allows 
for four different classes of solutions, each having differ-
ent physical origin and characteristics.

To start, there exist two possible solutions of (19) that 
do not depend on the dimensions of the mode. They obvi-
ously occur when the dielectric constant is zero, or when 
dispersive terms on both sides approach the infinity. The 
first solution occurs at ω1 = ωLO and is nothing but the (bulk) 
longitudinal optical phonon. The second solution occurs 
at ω2 = ωTO and is obviously a transverse optical phonon 
mode. Neither one of these solutions is interesting from a 
practical point of view. In the TO mode, the electric field 
is zero and the electric field inside the LO phonon mode is 
all contained deep inside the material. The third possible 
solution, occurring when a ~ λ/2n, is obviously a standard 
Fabry-Perot type mode inside the dielectric resonator (as 
shown in Figure 3A).

However, as long as the spatial extent of the mode is 
subwavelength, which in the context of this work means 
a < λ/2n, the only way the solution is attainable is when 
the medium is spatially inhomogeneous and incorporates 
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regions with both negative and positive dielectric con-
stants such that

	 2 3( ) ( ) 0.r E d rε =′∫ r r � (20)

The easiest way in which the condition (20), for this 
fourth solution, can be satisfied involves a subwavelength 
object made from a dielectric in the Reststrahlen region 

0( ) 0rε ω <′  surrounded by cladding made from a “normal” 
or low-dispersion dielectric with , 0( ) 0,r clε ω >′  as shown 
in Figure 3B. Whenever the energy balance condition (19) 
is satisfied at frequency ω0, this frequency is the eigen-
frequency of the SPhP mode. Obviously, condition (20) 
can also be satisfied in the subwavelength SPP structure 
shown in Figure 3C, which is made from a doped semicon-
ductor such as InAs.

Next to each structure, we show the breakdown of 
the in-phase UI and quadrature UQ energies. For a typical 
dielectric resonator operated outside the Reststrahlen 
(Figure 3A) region, the in-phase energy is split between 
the energies of electric field UEF, valence electrons UV, and 
potential energy of ions UP. For the subwavelength SPhP 
(Figure 2B), the potential energy of ions dominates, but in 
the SPP shown in Figure 3C, this potential energy is absent 
since free carriers, by definition, have no potential energy. 
This dominance vs. absence of potential energy of ions 
constitutes the major difference between SPhPs and SPPs, 
with the repercussions explained in the rest of this work. 
As far as the quadrature component of energy goes, SPhP 
and SPP behave similarly, with kinetic energy of ions or 
electrons UK dominating the magnetic energy UM in stark 
constant to the dielectric resonator energy breakdown of 
Figure 3A, shown above.

Note that the in-phase energy breakdown, in essence, 
determines the strength of the electric field enhancement 
[it increases with the (UEF/UI)1/2] and the quadrature energy 
breakdown determines the nonradiative loss (it increases 
with the UK/UQ). The fact that these important conclusions 
can be inferred from the physically transparent picture in 
Figure 3 without resorting to numerical modeling in itself 
may be considered to be an important result of this work.

4  �Localized SPhP – enhancing 
energy and electric field

4.1  �Resonant frequency and effective volume

To illustrate how the energy breakdown affects various 
phononic and plasmonic structures, consider the most 

simple example of a spherical particle, with radius a and 
dielectric constant εr(ω), placed in the cladding (dielectric 
constant εr, cl), as shown in Figure 1C with a dipole moment 

ˆp=p z  that is related to the field inside it as
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where r̂⊥  is the unit vector in the xy plane. Then one can 
evaluate the energy integrals outside
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and inside
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the particle, which, according to (20), immediately leads 
to the eigenmode condition
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Note that since cladding is normally nondispersive, 
Iout > 0 is the total potential energy in the cladding, but 
Iin < 0 is not the complete energy inside the nanoparticle.

Obviously, the solution for the dipole mode 
εr(ω) = − 2εr,cl satisfies (25). Thus, the solution for SPhP 
resonant frequency

	 2 2 2
0 ,/(1 2 / )TO P r clω ω ω ε ε∞= + + � (26)

can be obtained purely from energy conservation consid-
erations. Interestingly enough, the second solution of (25) 
is 2εr(ω) = − εcl, and it corresponds to the eigenmode of the 
spherical void inside the ε < 0 material filled with a con-
ventional ε > 0 dielectric.

One can therefore make an important statement 
regarding the energy balance in the deep subwavelength 
SPhP (and also, of course, SPP) mode. Equation (19) can 
be rewritten as
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indicating that the energy in the mode oscillates between 
the kinetic energy inside the dispersive medium (when the 
phase is 90 degrees or 270 degrees) and the combination 
of the potential energies of ions and electrons both inside 
and outside the dispersive medium (when the phase is 0 
of 180 degrees). The power constantly flows into the clad-
ding and back. The total energy can then be estimated 
simply as
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Substituting the eigenfrequency from (26) and using 
the fact that ωP  γ, we obtain
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where the Kv =(ε∞/εr,d + 2)/3 is the factor describing the 
“excess” potential energy stored in the valence electrons 
and
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is the factor corresponding to the energy stored in, and 
oscillations of the ions, while εst is the static dielectric con-
stant. Using (26), one can also express the “excess poten-
tial energy factor” as

	 2 2
0 ,( / )(1 2 / ).ph P r clK ω ω ε ε∞= + � (31)

Obviously, for the SPP, this factor is equal to unity, but 
for a typical phononic medium, such as SiC with εst = 9.7, 
ε∞ = 6.7, and dielectric cladding with εr,cl = 1 one obtains 
Kph ~ 4.

Next, one can introduce the effective volume as
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where the maximum field is Emax = 2Ein and Vn = 4/3πa3 is 
the nanoparticle volume. The first term, Kv, indicates that 
a significant part of the energy is stored in the oscillation 
of valence electrons, and the second term Kph indicates 
that an even larger fraction of the energy is stored in the 

lattice vibration. As a result, even when the energy can be 
efficiently concentrated by the nanoparticle, the enhance-
ment of the electric field may be less than stellar.

4.2  �Electric field enhancement

We now turn our attention to the estimates of the field 
enhancement. In the presence of the external electric field 
Eext, the nanoparticle acquires the dipole moment
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Substituting (1), we obtain in the vicinity of resonance 
ω ≈ ω0 (26)
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According to (22),
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Now, if we introduce the quality factor Q0 = ω0/γ, then 
at resonance, we obtain
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where Emax,0 = 2Q0Eext is the enhancement achieved near 
the nanosphere made from a “classical Drude” metal with 
ε∞ = 1 placed into the vacuum εr,cl = 1. As one can see, the 
same two factors are responsible for the decrease in the 
enhancement of the field compared to the Drude metal 
with ε∞ = 1. Now, we can use (32) and (35) to find the energy 
inside the SPhP mode
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where the external energy density is 1 2
ext 2 0 , ext .r clU Eε ε〈 〉 =  

The energy in the mode is reduced by the factor KvKph 
because the effective dipole is smaller in SPhP when com-
pared to the Drude metal. On top of that, the effective 
volume is larger in SPhP by the same factor – hence, the 
energy density gets enhanced by a factor (KvKph)2 less com-
pared to the Drude metal with ε∞ = 1.

To illustrate these results, we compare the perfor-
mance of two spherical structures; the first one is a SiC 
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sphere with a 0.5-μm diameter and the other is the sphere 
of equal size comprised of In0.53Ga0.47 As n-doped with a 
donor density of Nd = 6.5 × 1018 cm−3. The scattering rate 
in SiC, as previously mentioned, is γ ≈ 1.1 ps−1, while for 
InGaAs, it has been estimated from the mobility data [45, 
46] to be about eight times higher, γs ≈ 8.5 × ps−1. The results 
are shown in Figure  4 – the resonance of the phononic 
structure has a very narrow FWHM linewidth of about 0.28 
THz (Q ~ 100) compared to InGaAs – 2.2 THz (Q ~ 13), yet 
the field enhancement achieved with phononic structure 
(about 34-fold) is only three times higher than in the plas-
monic structure (about 11-fold). This discrepancy is due to 
the fact that most of energy is stored in the lattice vibra-
tions in SiC. The difference in the enhancement would 
have been even less than a factor of 3 if not for the fact 
that the larger fraction of energy is stored in the oscilla-
tions of valence electrons in InGaAs (Kv = 4.5 for InGaAs 
vs. Kv = 2.9 for SiC).

4.3  �Purcell enhancement

It is also interesting to see by how much one can enhance 
the spontaneous emission rate [47–49] γ0. The Purcell 
factor that describes enhancement relative to the emission 
into an infinite dielectric can be found as [50, 51]
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The radiative decay of the dipole (21) in turn can be 
found as [48]
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If we introduce the “scaled” volume of nanoparticle 
as 3( / )n n clV V n λ=′  and take into account that only the frac-
tion γR/(γR + γ) of radiation emitted into the SPhP mode 
radiates outside, we obtain for the effective enhancement 
factor
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This is precisely the same result as shown for the field 
enhancement. One should note that, typically, the Q-fac-
tor for SiC is on the scale of 200 or so vs. 20–30 for InAs. 
Therefore, both field enhancement [52] and Purcell factor 
characteristics in SPhPs and SPPs operating in the mid-IR 
region differ only by a factor of a few, despite nearly an 
order of magnitude longer scattering times for phonons.

5  �Propagating SPhPs
Let us now consider a propagating polariton between 
two media: one with real positive dielectric constant with 
weak dispersion εr,cl (Figure 1B) and one with the disper-
sive complex dielectric constant εr(ω) corresponding to 
either phononic (1) or plasmonic (2) material. The disper-
sion of the propagation constant of the polariton at the 
interface is
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where 2 1/2
,( ) / .cl r clk cω ε ω=  Differentiating (40) over frequency 

and assuming that one operates near the resonance, i.e. 
,( )r r clε ω ε≈ −′  (see Supplementary Material for the details), 

one can obtain the expression for group velocity
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where vcl is the propagation velocity in the cladding, and 
the factors Kv = (2 + ε∞/εr,cl)/3 and 2 2

, 0(1 2 / ) /ph r cl PK ε ε ω ω∞= +  
have been previously defined in (31).

24 25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

35

Frequency (THz)

F
ie

ld
 e

nh
an

ce
m

en
t

SiC

n+ InGaAs

Figure 4: Maximum field enhancement provided by the 0.5 μm 
spheres of SiC and n-doped InGaAs.
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As expected, the group velocity in the SPhP is reduced 
by an additional factor of Kph when compared to the SPP 
because most of the energy is not associated with the 
photon but with the lattice vibrations, which have very 
low group velocity. Note that the factor β/kcl in front of 
the brackets is the reduction of the phase velocity of the 
SPhP and is associated with the reduction of the magni-
tude of the magnetic field and Poynting vector inside the 
cladding, which causes a decrease in the energy propa-
gation velocity. The quadratic factor 2 2/ clkβ  inside the 
brackets is also associated with the fact that the Poynting 
vector inside the negative permittivity medium is directed 
backward.

Also from (41), we can obtain the expression for the 
imaginary part of propagation function
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This means that the propagation length of the SPhP is
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Once again, the factor Q0/Kph makes an appearance, 
indicating that enhancement of the propagation length in 
SPhPs is small relative to SPPs, despite a much lower scat-
tering rate. The SPhPs definitely live longer than SPPs, but 
since they propagate slower, their propagation length is 
not as long as one would expect.

To illustrate these results, we have considered the 
waveguides Figure 1B with air cladding and the SiC 
or n-doped (Nd = 6.2 × 1018 cm−3) InGaAs as a negative ε 
material.

In Figure 5A, the dispersion curves are shown. Due to 
its slower scattering rate, the SPhP in SiC reaches larger 
wavevectors (its effective index β/k0 reaches maximum 
value of 2.8) and has a longer propagation length than 
SPPs in n-doped InGaAs, as can be seen in Figure 5B. 
However, the difference between the two is not as high as 
one could expect from the nearly order of magnitude dif-
ference between the scattering rates. This can be explained 
by the fact that in SiC, a significant part of the energy is 
contained in oscillations of phonons, which slows down 
the propagation velocity and thus increases the loss.

6  �Comparison with guided bulk 
phonon polaritons

Having investigated the SPhPs and how they compare 
with SPPs, one can go back to our discussions in Section 3, 
where we have discussed the means of obtaining self-sus-
taining modes in small volumes, shown in Figure 3. So far, 
we have only considered the structures combining regions 
with positive and negative dielectric constants, i.e. inter-
face polaritons as represented in Figure 3B. However, what 
about operating with the same polar material in the “die-
lectric regime” (Figure 3A), where the dielectric constant 
remains positive but large as the frequency approaches 
ωTO? In this case, the photons get coupled with transverse 
optical phonons forming bulk phonon polaritons, which 
then can be confined in either a three-dimensional (3D) 
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resonant structure (Figure 3A) or in a slab waveguide 
structure as a guided bulk phonon polaritons polariton 
(GBPhP) mode (inset of Figure 6A). The 3D structure can 
support a Fabry-Perot-type mode capable of tight confine-
ment, but it suffers from high radiative losses at the facets; 
the wave guiding structure has no such problem.

We therefore consider a slab waveguide structure of 
Figure 6A made of the polar dielectric with positive dielec-
tric constant εr(ω) as in (1) surrounded by the nondisper-
sive cladding dielectric εr,cl < εr(ω), which can be air. One 
can confine the light fairly well in the waveguide with 
thickness of about 1/2~ / 2 ( ) / ( ),rw λ ε ω π β ω=  where

	 1/2 1/2
0( ) ( ) ( / ) ( ).r rk cβ ω ε ω ω ε ω= = � (44)

Performing differentiation of (44), we obtain the 
expression for the group velocity of GBPhP (see Supple-
mentary Material for the details)
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which immediately gives the value of propagation length 
for the guided polariton
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Comparison of propagation lengths of the guided (46) 
and surface (43) polaritons propagating with the same 
effective index β/k0 assuming an air cladding yields

	 3 1 21
4,guided ,surface/ 3 ( ).p pL L ε ε ε− −

∞ ∞ ∞+ +� � (47)

Therefore, for similar confinement guided polaritons, 
an improved enhanced propagation length is obtained. 
This can be related to the fact that in guided polaritons, 
the energy propagates forward both in the guide and in 
the cladding, while regarding surface polaritons, the 
energy in the material with negative epsilon propagates 
backward.

In Figure 6A, the dispersion of the GBPhP mode in 
SIC is shown – as expected, far larger wavevectors can be 
attained at frequencies slightly below the TO frequency 
than what is achievable with SPhPs, as shown in Figure 
5A. Also, as shown in Figure 6B, the propagation length of 
GBPhP greatly exceeds that of either SPhP or SPP for the 
same wavevector, i.e. for comparable confinement inside 
the cladding.

When it comes to propagating polaritons, one should 
also always remember that a simple metal-insulator-metal 
(MIM) waveguide is capable of supporting relatively low-
loss propagation at IR wavelengths. According to [29], an Au 
MIM waveguide with a 1-μm gap (confinement similar to the 
one in SiC polariton waveguide of Figure 6) will have prop-
agation length of about 100 μm for the wavelength in the 
10–12 μm range, i.e. at least as good as polariton waveguide. 
This is probably the main factor that will determine useful-
ness of phononics: phononic devices are indeed offering 
reduced loss in the mid- to far-IR range, but in this range the 
all-metal structures (such as MIM guides and patch anten-
nas) are also relatively low loss despite the intrinsically high 
loss of metal because the field simply does not penetrate the 
metal beyond roughly 100-nm skin depth.

Therefore, as one considers going to wavelengths 
longer than 10–12 μm using various III–V and II–VI polar 
materials, the relative advantages of metal structures 
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become more and more prominent. This is of course a 
well-known fact. For instance, while quantum cascade 
lasers operating in the mid-IR range do use dielectric wave-
guides, the ones operating in the far-IR [53] and THz [54–56] 
regions of the spectra always rely upon double clad metal 
waveguides to achieve maximum confinement at low loss.

7  �Conclusions
Using a simple yet physically insightful energy balance 
model (rather than relying on tedious numerical simula-
tion), we have shown that although the scattering rate of 
optical phonons in polar dielectrics is an order-of-mag-
nitude less than the scattering rate of electrons in doped 
semiconductors and two orders of magnitude less than in 
metals, this advantage is counterbalanced by the smaller 
effective plasma frequency and the fact that a significant 
part of energy is stored in the potential energy of lattice 
vibrations. Therefore, phononics, while being a valu-
able technology, does not hold an overwhelming advan-
tage over the metal plasmonics in the long wavelength 
region of the spectrum. Since phononics is limited to a 
relatively narrow spectral region either below or above the 
TO phonon frequency, while plasmonic structures have 
design flexibility allowing them to operate over any spec-
tral region, the question of whether to use metal struc-
tures, semiconductor plasmonics, or phononics should be 
handled judiciously for each specific application.
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