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Abstract: First- and second-order topological phases,
capable of inherent protection against disorder of mate-
rials, have been recently experimentally demonstrated in
various artificial materials through observing the topolog-
ically protected edge states. Topological phase transition
represents a new class of quantum critical phenomena,
which is accompanied by the changes related to the bulk
topology of energy band structures instead of symmetry.
However, it is still a challenge to directly observe the topo-
logical phase transitions defined in terms of bulk states.
Here, we theoretically and experimentally demonstrate
the direct observation of multifarious topological phase
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transitions with real-space indicator in a single photonic
chip, which is formed by integration of 324 × 33 waveg-
uides supporting both first- and second-order topological
phases. The trivial-to-first-order, trivial-to-second-order
andfirst-to-second-order topological phase transitions sig-
nified by the band gap closure can all be directly detected
via photon evolution in the bulk. We further observe the
creation and destruction of gapped topological edge states
associated with these topological phase transitions. The
bulk-state-based route to investigate the high-dimensional
andhigh-order topological features, togetherwith the plat-
form of freely engineering topological materials by three-
dimensional laser direct writing in a single photonic chip,
opens up a new avenue to explore the mechanisms and
applications of artificial devices.

Keywords: bulk-state-measurement; femtosecond laser
direct written lattice; topological phase transition; topo-
logical photonics.

1 Introduction
Topological phases, the core of fundamental description
of characterizing the states of matter with global wave
function [1, 2], have been rapidly developed for search-
ing novel topological materials and applied in a variety of
artificial topological systems [3–8]. Originating from the
integer quantum Hall effect [9, 10], topological insulators,
harnessing different topological phases [11] with bulk and
edge properties, inherently enable the superior capabili-
ties of lossless flowing of charges and information along
surface. Inaddition to the fundamentalphysics, theunique
robustness of topological phases and their transitions are
predicted to be the promising candidate for fault-tolerant
quantum computing [12] and superconductors [2]. Differ-
ent from the conventional transition of phases of matter
accompanied by the broken symmetry [13], the transi-
tion among different topological phases is particularly
characterized by the discontinuous changes of topological
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invariants [3] with the closed band gap [1, 2], which still
remains a long-standing challenge to detect.

Drawing inspiration from the topology in condensed
matter, analogous effects in electrons have been elegantly
mapped to photons [3–5], leading to advances related to
the fascinatingphenomenaof robust unidirectional propa-
gationof lightagainstdisorderanddefects [14–20]. Itholds
enormouspromise for thenext generationof integrated cir-
cuits for routing light in classical [21] and quantum region
[22–24]. Particularly, the exploration of first- and second-
order topologicalphases [25–27]provides the topologically
protected one-way channels in edges and corners for pho-
tonics systems, including topological insulator edge states
[14–20] and second-order topological insulators [28–32]
in multidimensional systems. It can be utilized for quan-
tum informationprocessing [22, 33–35] anddeveloping the
inherently robust photonic devices [36–39].

Compared with the wide investigation of topological
phases with topologically protected edge and corner states
[14–20, 28–32], the topological phase transitions defined
in terms of bulk states in the photonic systems are rarely
examined.Forphotons, it is challenging to resolve thewave
functions defined in momentum space with bulk features
of the systems. Recently, several progresses in exploring
topological phase transition in photonic system have been
proposed and implemented in 1D system, based on observ-
ing subgap states with adiabatically smooth edge [40, 41],
dynamics with discrete quantum walk [42–46] and loss
localized on sub-lattices [47, 48]. However, while entering
into the realm of high dimensional and high order topol-
ogy, the manipulation and manifestation of bulk topology
for topological phase transition have not been explored
yet.

Here, we theoretically and experimentally observe
multifarious topological phase transitions with coexis-
tence of three phases, including trivial phases, first- and
second-order topological insulator phases. We design and
fabricate 33 topologically-differential lattices, each con-
taining 18 × 18 sites, which are all integrated in one chip
using the femtosecond laser direct writing technique with
flexible site-engineering fashion. The transition with the
band gap closure in energy-momentum space is directly
detected by the indicator of bulk propagation in real space.

2 Results

2.1 Model of TPTI
The topological lattices are all integrated in one femtosec-
ond laser-written borosilicate silica chip [49, 50], as shown

in Figure 1a. The two-dimensional (2D) topological model
promoted from theone-dimensional dimer chain [51] could
be described by

H =
∑

m,n

(
tx + (−1)mΔtx

)
C†m+1,nCm,n

+
(
ty + (−1)nΔty

)
C†m,n+1Cm,n + H.c. (1)

where C†(C) is the creation (annihilation) operator of site
(m, n) along (x, y) directions and tx,y represents the average
hopping strength. The combination of Peierls distortions
(−1)m,n and the dimerization Δtx,y determines the strong
and weak couplings for intra-cell and inter-cell coupling
for two directions, which can bemodulated by the spacing
between the nearest waveguides in the photonic lattices
(seeFigure1bandc).ThecorrespondingHamiltonian in the
momentum space can be expressed as a 4 × 4matrix(k),
where k = (kx, ky). The elements H12 = H34 = tx1 + tx2 eikx ,
H13 = H24 = ty1 + ty2e−iky ; H21,H42,H31,H43 are the Hermi-
tian conjugate terms; the others are zero terms. Here, tx1(y1)
and tx2(y2) represent tx(y) −Δtx(y) and tx(y) +Δtx(y), respec-
tively. Owing to the coexistence of time-reversal and inver-
sion symmetries, ourmodel (see Figure 1b and c) exhibits a
novel topological phase with the vanished Berry curvature
[52, 53].

Using the norm of the polarization in crystalline
dielectrics [54], the phases can be characterized by the
wave polarization

Q = 1
2𝜋 ∫ dkx dky Tr

[
A
(
kx, ky

)]
(2)

where A =
⟨
𝜓
||i𝜕k||𝜓

⟩
is the integration of the Berry con-

nectionover thefirst BZ [52, 53]. Thewavepolarizationhere
is totally determined by the bulk property of the systems
[52]. Thenumerical results for thewavepolarization shown
in Figure 1d indicate that there are three different topolog-
ical phases in our system. Specifically, when Δtx < 0 and
Δty < 0, Q = (0,0), the system is in the trivial topological
insulatorphase;whenΔtx > 0andΔty > 0,Q = ( 12 ,

1
2 ), the

system is in the second-order topological insulator (SOTI)
phase [28, 29]; while for Δtx or Δty < 0, the system is in
thefirst-order topological insulator (FOTI)phase.Thus,our
system supports three topological phase transitions which
can be engineered and driven bymodulating the distortion
Δtx(y).

Topological phase transition is always accompanied
with the energy band gap closing process [1, 2]. We numer-
ically draw the energy band structure varying with Δtx
and Δty under the periodic boundary condition (depicted
in Figure 2a). There are four energy bands in ourmodel. For
the topological phase transition between the trivial phase,
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Figure 1: Schematic of observing topological phase transition in highly integrated lattices.
(a) The photons are injected into the entrance waveguide in the central unit cell. All the large-scale topologically-differential lattices,
possessing different topological phases, are integrated in a chip with the well-locked environment. (b) The micro crosssection of the
topologically-differential lattice with gradually varying distortion. (c) Trivial phase, FOTI phase and SOTI phase are supported in the
fabrication samples. The parameter tx,y = 0.3 andΔtx,y is smoothly modulated from−0.2 to 0.2. The unit of the coupling constants is
[mm−1]. (d) Topological phase diagram characterized by the wave polarization. Trivial phase, FOTI phase and SOTI phase are marked in red,
gray and blue regions, respectively.

Q = (0,0), and the FOTI phase,Q = ( 12 ,0), the energy band
closure occurs when Δtx = 0, where the second (third)
energy band touches the first (fourth) energy band along
kx direction. There is also phase transition in the process
between the FOTI phase, Q = ( 12 ,0), and the SOTI phase,
Q = ( 12 ,

1
2 ) with the band gap closure emerging atΔty = 0.

For the phase transition process between the trivial phase,
Q = (0,0), and the SOTI phase, Q = ( 12 ,

1
2 ), the four energy

bandsdegenerately coincide at four corners of thefirst Bril-
louin zone whenΔtx,y = 0. Moreover, the phase transition
also associates with band inversion process [52, 53].

To unravel and visualize the aforementioned bulk
band gap closure from momentum space to real-space

observable, we employ the expected value of the square
of position operator in long-time limit as an indicator. The
square of position operator in our model is defined as

r2 =
N∑

x,y=1
(x2 + y2)

(
P2x−1,2y−1 + P2x−1,2y

+ P2x,2y−1 + P2x,2y
)

(3)

where Pm,n = c†m,ncm,n is the photon population probability
of the site (m, n) and index (x, y) is the position of unit
cell. The injection of photons into one of the waveguides
in the middle unit cell of lattices (far from boundary) can
be regarded as the excitation of bulk states.
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Figure 2: Topological phase transition and its indicator.
(a) The band structures in topological phase transition. The arrows
indicate the phase transition among trivial, FOTI and SOTI phases.
(b) The simulated results of TPTI as a function ofΔtx,y . The dash line
shows the phase transition trajectories detected in experiment.

After propagating a long distance z, the diffraction
behavior of photons can be characterized by the expected
value of the square of position operator. This process
is measured by: ̄r2(z) = ⟨𝜓(z)|r2|𝜓(z)⟩, which reflects the
generalized photon density centre located at the 2D lat-
tices. Based on the density centre, the topological phase
transition indicator (TPTI) can be defined as: St = ̄r2∕z2 for
2D systems. It characterizes the diffraction range of pho-
tons in waveguide lattice. Furthermore, the TPTI can be
analytically derived as

St =
⎧
⎪
⎨
⎪⎩

(tx −Δtx)2 + (ty −Δty)2
2 , Δtx > 0, Δty > 0

(tx +Δtx)2 + (ty +Δty)2
2 , Δtx < 0, Δty < 0

(4)

where TPTI is the coupling-strength dependent quantity
(see the SupplementaryMaterial Section II for the relation-
ship between topological phase transitions and TPTI in
detail).

Simulated TPTI for characterizing the topological
phase transition as a function of Δtx,y are shown in
Figure 2b. The value of TPTI is higher when Δtx,y
approaches to zero. For topological phase transition
between trivial phase and FOTI phase along horizon-
tal routes (FOTI phase and SOTI phase along vertical
routes), the TPTI possesses a peak pinned at the turn-
ing point of Δtx = 0(Δty = 0). When trivial phase evolves
to SOTI phase along the diagonal routes with simultane-
ous modulation for two directions, there is a higher peak
located at the transition point of Δtx,y = 0 (see the Sup-
plementary Material Section III for properties of TPTI in
detail). In this way, the topological phase transition can be
directly mapped to the peak indicator of TPTI observed in
real space.

2.2 Experimental observation of TPTI
In our experiment, to observe the topological phase
transitions between multifarious topological phases, we
implement integrated topological photonic lattices in an
on-demand fashion by femtosecond laser direct writing
(more details are shown in the Supplementary Materials).
We set the case of trivial-to-first-order (first-to-second-
order) by varying Δtx from −0.2 to 0.2 with a step of
0.04 (Δty from−0.2 to 0.2 with a step of 0.04) and remain-
ing Δty = −0.2 (Δtx = 0.2). We then detect the transition
processbetweenSOTIand trivialphasesbysimultaneously
modulatingΔtx andΔty, both from 0.2 to−0.2 with a step
of −0.04. Such that, each transition process is monitored
by 11 samples containing 18 × 18 sites (9 × 9 unit cells)
individually. It means that all the 33 lattices and up to
ten thousands waveguides are integrated in one photo-
nic chip, which guarantees each topologically-differential
lattice with different topological phases placed in a well-
locked environment. After photons launched into themid-
dle unit cell of the lattice, the intensity distribution can be
directly captured by an imaged camera system (shown in
Figure 1a).

The experimental results of TPTI for three cases are
shown in Figure 3. The intensity distribution cannot show
any clues for distinguishing the occurrence of topologi-
cal phase transition with clear-cut evaluation. But there
are three peaks for TPTI when the system suffers three
topological phase transitions among trivial, FOTI and SOTI
phases (see Figure 3a). During modulation of Δtx,y on the
photonic chip, peaks of TPTI sign the topological phase
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Figure 3: Experimental measurement of topological phase transition indicator.
(a) The measured TPTI as a function ofΔtx andΔty along the triangular trajectory shown in Figure 2(b). There are three peaks at the phase
transition points where the system undergoes topological phase transitions. The evolution length for all the waveguide lattices is 14 mm.
The error bar is originated from the fabrication shift of the waveguide lattices. (b) Output photon distribution of the waveguide lattices with
the coupling strengths chosen as (i–ix) marked in (a), corresponding to (i) trivial phase, (ii) gap closing separating trivial and FOTI phases,
(iii) FOTI phase, (iv) FOTI phase, (v) gap closing separating SOTI and FOTI phases, (vi) SOTI phase, (vii) SOTI phase, (viii) gap closing
separating SOTI and trivial phases and (ix) trivial phase. The coupling strength tx,y = 0.3 mm−1. The unit of the coupling constants is mm−1.

transition points with band gap closure. It turns out that
we canmonitor the sudden change of the topology by TPTI
in the topological phase transitionprocess. In addition, the
peak in the third transition case for SOTI to trivial phase
is distinctly higher, as expected. Therefore, the band gap
closing points defined in the momentum space for charac-
terizing the topological phase transition is experimentally
observed through the real space observable TPTI.

One essential feature of topological phase transition
is the creation and destruction of topologically protected
edge states. To visualize the wave function for the edge
states, we launch photons into the boundaries of the lat-
tices and see the intensity distribution. The localization
of the edge states can be quantified by generalized return
probability [40] 𝜉 =

(∑n+Δ
i=n |𝜓i|2

)
∕
(∑N

i=1|𝜓i|2
)
, where N

is the total site number of lattice, n is the site along the
exciting boundary of the lattice andΔ is the index interval
between the neighboring sites along the excited boundary.

We drive SOTI phase into FOTI phase by only decreas-
ing Δty from 0.2 to −0.04 and remain Δtx = 0.2, corre-
sponding to the transition from Q = ( 12 ,

1
2 ) to Q = ( 12 ,0)

based on Eq. (2) (see Figure 1d). The changes ofwave polar-
izationalongydirection imply thecreationanddestruction
for the corresponding edge states (more details are shown

in the Supplementary Materials Section IV). As shown in
Figure 4i, the top localized edge state emerges with high
return probability and then disappears with low return
probability. For the case of transition from FOTI phase
(Q = ( 12 ,0) to trivial phase (Q = (0,0)) by only decreasing
Δtx from 0.2 to −0.04 and remain Δty = −0.2, there is a
sudden change forwave polarization along the x direction.
The creation and destruction of left localized edge states
are observed during the transition (see Figure 4ii). We also
simultaneously drive both Δtx and Δty from 0.2 to −0.04,
which corresponds to the transition from Q = ( 12 ,

1
2 ) to

Q = (0,0). There are sudden changes for both wave polar-
izations along the two directions. As shown in Figure 4iii,
both top and left edge states simultaneously localize in the
boundaries and then diffract into the bulk, accompanied
with the transition from SOTI phase to trivial phase. In
addition, it can be noted that, in the region close to the
phase transition points (Δtx = 0 or Δty = 0), the exciting
edge states all tend to diffuse with low return probability,
which shows insensitivity to the turning points. However,
the demonstrated TPTI shown in Figure 3 ismuch sensitive
to all the turning points, which precisely distinguishes the
occurrence of the transition among SOTI, FOTI and trivial
phases.
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Figure 4: Experimental observation of creation and destruction of topological edge states. There are three detected trajectories for
observing the creation and destruction of topological edge states under the modulation ofΔtx,y . The process from SOTI to FOTI phases, from
FOTI to trivial phases and from SOTI to trivial phases is marked by blue, red and gray dash lines, respectively. The red arrows indicate the
launching positions

3 Conclusions and discussions
In summary, the observation of topological phase tran-
sition with full control of bulk topology and freely
engineering fashion, including topological lattices with
trivial, FOTI and SOTI phases, is fundamentally essential
for understanding high-dimensional and high-order topo-
logical physics. The developed TPTI approach can directly
identify the multifarious phase transitions based on the
photonevolutionpattern in 2Dsystems, insteadof the com-
plex statistical detection with multi-step and multi-time
[42, 44, 45, 55]. The signal of topological phase transition
is based on the excitation of bulk states with engineering
of the spatial geometry, free of constructing adiabatically
smooth boundary with stringent demand between topo-
logically distinct phases [40].

The successful observation of the photon propagation
mapping thebandgapclosure in theHermitiansystemhere
may inspire the future exploration in the non-Hermitian
systems [56], such as, metal-insulating phase transition in
the non-Hermitian quasicrystals [57] and phase transition
in parity-time-symmetric crystal [58]. Finally, our findings
pave a novel avenue for exploring topological phase tran-
sitions in other artificial systems with high-dimension and
high-order beyond photonics, such as phononic [59–62],
microwave [63], electrical circuits [64, 65] and plasmon-
polaritonic [66].
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