Research Article

Yi Ren, Hua An, Weiguan Zhang, Songrui Wei, Chenyang Xing* and Zhengchun Peng*

Ultrasmall SnS$_2$ quantum dot—based photodetectors with high responsivity and detectivity

https://doi.org/10.1515/nanoph-2022-0277
Received May 15, 2022; accepted September 14, 2022; published online September 29, 2022

Abstract: Quantum dots (QDs) often exhibit unique behaviors because the reduction in lateral size leads to stronger quantum confinement effects and a higher surface-to-volume ratio in comparison with larger two-dimensional nanosheets. However, the preparation of homogeneous QDs remains a longstanding challenge. This work reports the preparation of high-yield and ultrasmall tin disulfide (SnS$_2$) QDs by combining top-down and bottom-up approaches. The as-prepared SnS$_2$ QDs have a uniform lateral size of 3.17 ± 0.62 nm and a thickness of 2.39 ± 0.88 nm. A series of self-powered photoelectrochemical-type photodetectors (PDs) utilizing the SnS$_2$ QDs as photoelectrodes are also constructed. Taking advantage of the tunable bandgaps and high carrier mobility of the SnS$_2$, our PDs achieve a high photocurrent density of 16.38 μA cm$^{-2}$ and a photoresponsivity of 0.86 mA W$^{-1}$, and good long-term cycling stability. More importantly, the device can display obvious photoresponse, even at zero bias voltage (max), and greater weak-light sensitivity than previously reported SnS$_2$-based PDs. Density functional theory calculation and optical absorption were employed to reveal the working mechanism of the SnS$_2$ QDs-based PDs. This study highlights the prospective applications of ultrasmall SnS$_2$ QDs and provides a new route towards future design of QDs-based optoelectronic devices.

Keywords: PEC-type photodetectors; quantum dots; tin disulfide.

1 Introduction

Recently, photodetectors (PDs) based on two-dimensional (2D) materials such as graphene [1, 2], black phosphorus (BP) [3, 4], and layered metal dichalcogenides (LMDs) [5, 6] have been active areas of research because of their unique optoelectronic properties. Among these PDs, graphene is the most studied owing to the high carrier mobility (≈105 cm2 V$^{-1}$ s$^{-1}$) [7]. However, graphene-based photoelectric devices are greatly limited by their absence of a bandgap. Different from graphene, BP shows great promise for optoelectronic applications benefits from its widely tunable energy gap (from 0.3eV in the bulk to 2.2eV for a monolayer) [8]. Nevertheless, BP-based devices are susceptible to degradation under deleterious environmental conditions because of its oxygenated and hydrophilic properties [9]. LMDs encompass a large family of materials (e.g. ReS$_2$, MoS$_2$, NbSe$_2$, CrSe$_2$, SnS$_2$, and WS$_2$), and many of them exhibit landmark features that subjected to an indirect–direct bandgap transition from the bulk phase to a monolayer [10–12]. In addition, the high mobility and unique size, thickness, and flexibility of LMDs result in excellent electronic properties, such as the improved integration levels and containment of short-channel effects [13–15]. These merits render LMDs suitable candidates for high-next-generation optoelectronics. Among various semiconducting LMDs, SnS$_2$ is a promising material for electronic and optoelectronic applications with high charge carrier mobility, regulable bandgap (from 2.41 eV for a monolayer nanosheet
to 2.18 eV in the bulk phase), and a high absorption coefficient of 10^4 cm$^{-1}$ [16]. However, the performance of SnS$_2$-based PDs in terms of responsivities and detectivities remains poor, which hinders their practical applications [17–19].

Researchers have been made extensive efforts to improve the performance of LMDs-based PDs by constructing heterostructures [20, 21], morphology engineering [22–24] and chemical doping [25, 26]. In particular, tailoring the lateral dimensions of LMDs to quantum dots (QDs) or 0D nanodots is an effective means of adjusting their intrinsic properties or inducing new optical/electrical characteristics [27]. Among these LMDs-based nanostructures, QDs possess many inherent advantages in the field of PDs such as strong quantum confinement effects, large surface area to volume ratios, and additional active edge sites [28, 29]. Compared with widely studied MoS$_2$ and WS$_2$ [30–32], reports on mild preparation methods for SnS$_2$ QDs remain scarce and incomprehensive. So far, SnS$_2$ QDs have been synthesized using two classes of methods: top-down method by high-powered and long-time liquid exfoliation [33] and bottom–up route by L-cysteine-assisted hydrothermal method [34]. Nevertheless, the low yield and repeatability, complicated syntheses procedures and lack of redispersed solvents remain bottlenecks, leading to uncontrollable and irreproducible reactions from the various batches. Therefore, a strategy for mass production and reproducible preparations of high-quality of SnS$_2$ QDs is highly desirable.

Herein, we overcome this performance bottleneck by combining both top–down and bottom–up approaches through liquid-phase exfoliated (LPE) and solvothermal methods for the fabrication of ultrasmall and high-quality SnS$_2$ QDs with outstanding self-powered PD properties. At zero bias condition, the devices exhibited a high photocurrent density (P_{ph}) of 0.72 μA cm$^{-2}$ in 0.1 M KOH. Furthermore, the photo-response behavior of photovoltaic chemical (PEC) SnS$_2$ QDs-based PDs is studied under different electrolyte, light wavelength, and bias potential and its possible working mechanism as revealed by Density functional theory (DFT) calculations for the first time. In addition, the SnS$_2$ QDs-based PDs also exhibit good long-term stability over 30 days, which was unimaginable for analogous QD materials. Our work provides a facile method to obtain high quality of SnS$_2$ QDs, which provides us with new perspectives for designing novel QDs-based PEC PDs.

2 Experimental section

2.1 Synthesis of 2D and 0D SnS$_2$ nanostructures

Briefly, SnS$_2$ NSs were prepared from SnCl$_4$ · 5H$_2$O and thioacetamide (TAA) by a hydrothermal method in 20 mL of DI water. The autoclave was sealed and maintained at 160 °C for 12 h in an electric oven. After the hydrothermal reaction, the obtained SnS$_2$ NSs were washed with water and ethanol several times. Subsequently, SnS$_2$ powder was sonicated in NMP solvent at a concentration of 6 mg mL$^{-1}$ for 8 h.

Scheme 1: Preparation process of the SnS$_2$ QDs and SnS$_2$ QDs-based PDs. (a) Preparation process of the SnS$_2$ QDs. (b) Schematic Diagram of evaluating SnS$_2$ QDs PDs.
The few-layer SnS$_2$ was obtained and centrifuged at a speed of 6000 rpm for 5 min. Thereafter, the obtained suspension was delivered to a three-neck flask under argon and heated in an oil bath at 140 °C for 3 h. Thus, high-quality SnS$_2$ QDs with uniform size were formed. Before the devices were fabricated, the SnS$_2$ QDs were stored in the NMP solution.

2.2 Characterization

The morphologies of the SnS$_2$ QDs were investigated by TEM and high-resolution TEM (JEOL-JEM-2000F) and AFM (Shimadzu SPM-9700, Dimension instrument with 512–px resolution). The period boundary condition was applied in all three directions. A vacuum space of at least 15 Å was applied in the z-direction to avoid the interaction between two periodic images in each slab model.

2.3 Device fabrication

First, ITO substrates were washed ultrasonically with acetone, ethanol, and DI water in order for 20 min total. After drying in nitrogen (N$_2$), 1 mg of SnS$_2$ QDs was added to 1 mL of Nafion/NMP (0.05 wt%) and sonicated for 30 min (320 W) to obtain a homogeneous slurry. Thereafter, the mixture was dropped onto the conductive side of ITO glass, which was dried in a vacuum oven at 80 °C overnight.

2.4 Photoresponse measurement

The photo-response behavior of SnS$_2$ QDs was evaluated with a photoelectrochemical (PEC) system on an electrochemical workstation (CHI 760E). The SnS$_2$ QDs-coated ITO glass, platinum plate, and a KCl saturated Ag/AgCl as the working electrode, counter electrode, and reference electrode, respectively. The SnS$_2$ QDs-based devices were illuminated under different simulated lights (mixed light from 300 to 800 nm; monochromatic light: 365, 380, 400, 475, and 550 nm) illuminated under different simulated lights (mixed light from 300 to 800 nm; monochromatic light: 365, 380, 400, 475, and 550 nm) and Sn 3d envelope were characterized by XPS (Thermo K-alpha+).

3 Results and discussion

3.1 Morphology and crystal characterization of SnS$_2$ QDs

Scheme 1 demonstrates a representative procedure for SnS$_2$ QDs-based PEC-type PDs. SnS$_2$ nanosheets (NSs) were obtained through LPE of multilayer SnS$_2$ by using the strongly-polar solvent N-methyl-2-pyrrolidone (NMP) for dispersion. Then, uniform-sized SnS$_2$ QDs were successfully fabricated by increasing solvothermal method, and this approach could effectively improve the quality of SnS$_2$ QDs. Subsequently, SnS$_2$ QDs was deposited on the indium tin oxide a (ITO) glass by drop-coating and used the SnS$_2$ QDs as the working electrode of a standard triple electrode for PEC-type PDs (refer to the experimental section for details). The transmission electron microscopy (TEM) image in Figure 1a indicates quite uniform SnS$_2$ QDs with a circular shape. It shows the distribution of SnS$_2$ QDs particles with a diameter at ca. 3.17 nm (Figure 1b).

The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of SnS$_2$ QDs is depicted in Figure 1d. The crystal lattices of SnS$_2$ QDs were 0.196 and 0.214 nm (Figure 1e), corresponding to the (111) and (102) faces of hexagonal SnS$_2$ crystals (JCPDS card No. 23-677) [41]. The results of the corresponding selected area electron diffraction (SAED) pattern (Figure 1c) indexed well to the hexagonal SnS$_2$ crystal and the marked lattice planes are in good agreement with the previous report [42, 43]. Energy-dispersive X-ray spectroscopy (EDS) elemental mapping (Figure 1f) further illustrates the successful synthesis of SnS$_2$ QDs. Besides, Figure S1 indicates that individual SnS$_2$ NSs were hexagonal structures with lateral dimensions about 20 nm. The morphology and thickness of the as-prepared SnS$_2$ QDs was further investigated by atomic force microscopy (AFM) image in Figure 1g. The average thickness of the SnS$_2$ QDs ranged from 0.62 nm (one layer) to 6.24 nm (10 layers), with an average thickness of 2.39 nm, indicating their predominantly four-layer nature (since the thickness of a monolayer was 0.60 nm) [44, 45].

In addition, the suspension state of the as-prepared SnS$_2$ QDs was very stable, with no significant aggregation
and decomposition for at least 1 month, probably due to the protective chemical stability of the NMP solvent for SnS$_2$, similar to that of BP (Figure S2) [46].

In the Raman spectra of 2D and 0D SnS$_2$ as shown in Figure 2a, the strong characteristic peaks at 314.5 and 313.5 cm$^{-1}$ correspond to the A$_{1g}$ vibration mode of SnS$_2$ NSs and SnS$_2$ QDs, respectively. This observed in-plane Raman mode of the atomic vibration shift at ca. 1 cm$^{-1}$ closely correlates with the substantial variation of nanostructured SnS$_2$, which is consistent with the literature [41, 47]. Furthermore, the elemental composition and binding information of SnS$_2$ were intensively studied by high-resolution X-ray photoelectron spectroscopy (XPS). Figure 2b and c present the comparison of high-resolution XPS spectra of S 2p and Sn 3d of the as-prepared SnS$_2$ NSs and SnS$_2$ QDs samples. Regarding the S 2p spectra (Figure 2b), the peaks located at 161.8 and 162.9 eV are indexed to S 2p$_{3/2}$ and 2p$_{1/2}$ orbitals of SnS$_2$ QDs. The peak position of S 2p shows gradually positive shift with the decrease in the lateral size of SnS$_2$. The peaks at 495.3 and 486.9 eV are attributed to the Sn 3d$_{3/2}$ and Sn 3d$_{5/2}$ orbitals of SnS$_2$ QDs. The similar increase of the binding energy observed in the Sn 3d X-ray photoelectron spectra (Figure 2c).

The morphology-dependent properties of SnS$_2$ have been investigated by UV–vis. Figure 2d shows the UV–vis spectra of SnS$_2$ NSs and QDs in NMP. It can also be clearly observed that SnS$_2$ NSs show absorption ranging from 250 to 800 nm (Figure 2d) and the corresponding bandgap was estimated to be ca. 2.90 eV when taking (Ah2ν0)$^{0.5}$ as...
Figure 2: The characterization of SnS$_2$ QDs. (a) Raman spectra of 2D and 0D SnS$_2$ at 532 nm excitation wavelength. (b, c) XPS spectra of S 2p and Sn 3d of SnS$_2$ QDs and NSs, respectively. (d) UV–visible absorption spectra. The inset shows the photographs of as-prepared SnS$_2$ NSs and SnS$_2$ QDs solutions. (f) XRD patterns of the SnS$_2$ QDs and SnS$_2$ NSs.

a function of the photon energy ($h\nu$; Figure 2e), which is in agreement with a previous report [48]. After the reaction, the solution changed from brown yellow to a transparent purple, and the final product was collected by centrifugation. The main peak of SnS$_2$ QDs was blue-shifted compared to SnS$_2$ NSs. These results originated from the quantum confinement of carriers, similar results were reported in MoS$_2$ and WS$_2$ QDs [49]. The crystal structure of the obtained SnS$_2$ NSs and SnS$_2$ QDs were systematically investigated by X-ray powder diffraction (XRD) patterns. As shown in Figure 2f, the peak position of SnS$_2$ QDs are almost the same compared to the XRD pattern of SnS$_2$ NSs, although the characterized (001) reflection was broadened and most of other diffraction intensities were obviously reduced, indicating the highly exfoliated nature of these QDs [50].

3.2 DFT calculations of SnS$_2$

Although monolayers of SnS$_2$ has been considered by several theoretical [16, 44] and experimental groups [39, 51, 52], the SnS$_2$ QDs with few-layer have not been systematically studied so far. To gain further insight, this work investigates the evolution of the structural and electronic properties of SnS$_2$ based on DFT calculations, by using Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional and Perdew–Burke–Ernzerhof (PBE) methods. In contrast to MoS$_2$, both bulk SnS$_2$ and few-layer SnS$_2$ are indirect band gap semiconductors [53, 54]. As indicated by the layer dependence of the band structure of SnS$_2$ (Figure 3), the conduction-band minimum (CBM) was located at the M high-symmetry point, and the valence-band maxima (VBM) was at a point along the Γ−M line. Our calculations indicate the thickness-dependence of theoretical indirect band gap (e.g.) of SnS$_2$ which ranged from 1.32 eV for 12 layers to 1.588 eV for the monolayer, see details in Table S1. As displayed in Figure 3a, the decrease of e.g. with increasing number of layers, which can be credited to the effective reduction of electrostatic interactions by screening the vacuum in the lamellar structure, as well as the quantum confinement of electrons within a quasi-2D material of finite thickness [55]. Notably, using PBE methods alone to describe exchange-correlation interaction of electrons will undervalue the e.g. (≈1 eV), since it ignores the screened Coulomb potential for Hartree–Fock exchange [56, 57]. Hence, e.g. of one-layer, four-layer and bulk SnS$_2$ were also calculated by using hybrid HSE06 functionals (Figure S3), and obtained values of 2.42, 2.30 and 2.48 eV, respectively, similar to the values of e.g. calculated from the UV–vis spectra (see Figure 2e). As illustrated in Figure S3d, the total and local density of states (DOS) of four-layer SnS$_2$ indicates that the VBM were dominated by S-$3p$ states, and a large
DOS of the VBM was considered as the main contribution to the high photo-conversion efficiency. In contrast, the S-3p and Sn-5s hybridized states played dominant roles in the CBM.

The e.g. has an important influence on the photo-response behavior of SnS$_2$ QDs-based PDs, where a decreased e.g. can enhance the absorption of light energy and result in better photo-response performance. To further elaborate on the electrolyte concentration and different electrolytes effects, the band gaps of SnS$_2$ are calculated under different concentrations and electrolytes, respectively. On the basis of the aforementioned AFM results, the thickness of the prepared SnS$_2$ QDs was mainly four layers. Therefore, four—layers of SnS$_2$ QDs was selected as the thickness for further study. As displayed in Figure 3b, the Eg of SnS$_2$ QDs were substantially modulated.
with different external electrolyte. For instance, the Eg of low concentration of hydroxyl terminations (1–OH) adsorbed onto four–layer SnS2 QDs was evaluated to be 0.55 eV, which is remarkably lower than that of pristine four–layer SnS2 QDs (1.50 eV). Therefore, the photoresponse performance of PDs can be significantly improved by increasing the KOH concentration, which is in good accordance with the experimental results.

3.3 Optoelectronic performance of SnS2 QDs

Based on the theoretical investigations of the layer-dependent electronic structure of SnS2 and UV–vis absorption spectra, four–layer SnS2 QDs in KOH electrolyte with a small bandgap by UV can be easily excited by UV light to generate electrons and enhance their electrochemical properties. Consequently, SnS2 QDs were utilized as candidate material for PEC-type PDs. Figure 4a shows a schematic diagram of the SnS2 on the ITO and employed as the working electrode of the (PEC-type) PDs. Generally, the pertinent parameters of photoresponse characteristics including photocurrent density (I_{ph}), photoresponsivity (R_{ph}), and specific detectivity (D^*) by the following equations [58].

$$I_{ph} = (I_{light} - I_{dark}) / S$$ \hspace{1cm} (1)

![Figure 4: The photoresponse behavior of SnS2 QDs under different conditions. (a) Structural diagram of working electrode (SnS2 QDs onto the ITO glass). (b) LSV curve of SnS2 QDs-based PDs in different level of simulate light. (c) Photo-response behavior under mixed light in 0.1M KOH at different bias potentials. (d) Typical on/off switching behavior in 0.1M KOH under different monochromatic light at 0.6 V. The calculated (e) photocurrent density (P_{ph}) and responsivity (R_{ph}) as a function of power density at 0.6 V (g) photo-response behavior in 0.5 M KOH under different monochromatic light at 0.6 V. The calculated (h) P_{ph} and (i) R_{ph} under various wavelengths as the increment of KOH concentration at level VI.](image-url)
The photoresponse characteristics of SnS$_2$ QDs-based PDs were systematically studied at increased light power density (P_{ph}) and different electrolyte solutions. Figure 4c shows the photocurrent density (I_{ph}) as a function of both the bias voltages and light power density (i.e., from level I to level VI, see details in Table S2), under simulated light (a mixed light from 300 to 800 nm), P_{ph} increased from 0.72 to 1.5, 2.94, and 7.1 μA cm$^{-2}$ at Level VI, and the applied bias potential was increased from 0 to 0.2, 0.4 and 0.6 V, respectively. The P_{ph} values were substantially enhanced with ~10 times, because a higher bias will promote photogenerated carrier efficiency. Notably, a stable “on-off” switching behavior of current density is clearly observed even at unbiased potentials, confirming its promising applications in the self-powered PDs. In addition, the on/off signal of uncoated ITO glass in 0.1 M KOH was negligible, which demonstrates the photoresponse signal under simulated light originated from the SnS$_2$ QDs.

On the basis of the UV–vis near-infrared absorption spectra of SnS$_2$ QDs, the absorption peak was ranged from 250 to 550 nm. Therefore, five quasi-monochromatic light wavelengths ($\lambda = 365, 380, 400, 475$ and 550 nm) were used for evaluating the photoresponse performance of SnS$_2$ QDs-based PDs. Figure 3d and e display the P_{ph} the relationships with P_{λ} under the light irradiation at various wavelengths and a bias potential of 0.6 V in 0.1 M KOH. It can be observed that P_{ph} shows a decreasing trend from 365 to 550 nm. At level VI, P_{ph} reached 3.55 μA cm$^{-2}$ (365 nm) and decreased to 0.11 μA cm$^{-2}$ (550 nm). This result is in good accordance with the UV–vis spectra, and the same phenomena can be observed in 0.5 M KOH electrolyte (Figure 4g). In contrast to the relationship of $P_{ph} - P_{\lambda}$, R_{ph} exhibited an opposite trend as shown in Figure 4f. Under the irradiation of 365 nm laser, R_{ph} rapidly decreased from 10.27 mA W$^{-1}$ (level I, 0.073 mW cm$^{-2}$) to 3.95 mA W$^{-1}$ (level II, 0.40 mW cm$^{-2}$), 0.47 mA W$^{-1}$ (level III, 4.85 mW cm$^{-2}$), 0.30 mA W$^{-1}$ (level IV, 10.25 mW cm$^{-2}$), 0.23 mA W$^{-1}$ (level V, 14 mW cm$^{-2}$), and further to 0.19 mA W$^{-1}$ (level VI, 19.15 mW cm$^{-2}$). As illustrated in Figure 4h, the relationship between P_{ph} and electrolyte concentration was also evident, with an 2.5 and 16.7 – fold increase in P_{ph} when the KOH concentration was increased from 0.05 M to 0.1 and 0.5 M at level VI, respectively. In addition, the calculated D^* value was 7.02 \times 108 Jones under an illumination of 365 nm (level VI) in 0.1 M KOH at 0.6 V, lower than that in a high concentration of KOH electrolyte (5.83 \times 107 Jones in 0.5 M KOH). These results can be explained by the fact that both an increased bias potential and KOH concentration can improve the photoresponse due to the promotion of electron excitation and the increased ion concentration, respectively. The maximum P_{ph} value of 16.38 μA cm$^{-2}$ is obtained under the irradiation of 350 nm monochromatic light in 0.5 M KOH, which is significantly higher than most of previously reported PEC-type PDs, as summarized in Table 1. The results indicating the excellent PEC photoresponse behavior of the 2D SnS$_2$ QDs-based PDs in this work.

Figure 5a displays the typical on/off behavior of SnS$_2$ QDs in 0.1 M Na$_2$SO$_4$ at level VI and 0.6 V under the irradiation of a 400 nm laser. The photocurrent response as a function of wavelength is similar to the results observed in the KOH electrolyte. Based on the DFT results in Figure 3b, once SnS$_2$ QDs adsorbs with the OH and SO$_4^{\lambda-}$ groups, e.g. can be rapidly modulated from 1.50 (four-layer SnS$_2$) to 0.552 (OH group) and 0.520 eV (SO$_4^{2-}$ group). The experimental results in Figure 5a demonstrated that the photo-response performance in 0.1 M Na$_2$SO$_4$ (3.15 μA/cm2) was slightly lower than that in the 0.1 M KOH (3.55 μA/cm2) electrolyte under a 365 nm laser at level VI, which is consistent with the above theoretical calculations. In addition, the resistance (R) at the interface between the electrolyte and electrode, Figure S4 shows the order $R_{0.1M}$ (KOH) > $R_{0.1M}$ (Na$_2$SO$_4$) > $R_{0.1M}$ (HCl). This implies that the type of electrolyte has a strong influence on the photoresponsive behavior, which can be attributed to the synergy between the atomic structure of SnS$_2$ and the adsorbed functional groups. In addition, the P_{ph} in the HCl electrolyte was negligible compared to that in the 0.1 M KOH and Na$_2$SO$_4$ electrolytes. Therefore, we mainly investigated the photoresponse behavior of SnS$_2$ QDs-based PDs in KOH and Na$_2$SO$_4$ electrolytes.

The response (t_{res}) and recovery (t_{rec}) time are other key parameters for PDs in practical applications. Regarding SnS$_2$ QDs-based PDs, the t_{res}/t_{rec} are measured under the irradiation of 365, 400, 475 and 550 nm at level VI.
Table 1: The comparison of the SnS$_2$ QDs-based PDs and other previously reported PEC-type photodetection.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Conditions</th>
<th>Photocurrent (μA/cm2)</th>
<th>Responsivity (mA/W)</th>
<th>Detectivity (D^*, Jones)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Ga$_2$O$_3$</td>
<td>0.5M Na$_2$SO$_4$, 0 V</td>
<td>19.49</td>
<td>1.44</td>
<td>–</td>
<td>[43]</td>
</tr>
<tr>
<td>PbO QDs</td>
<td>0.01M KOH, 0.6 V</td>
<td>5.93</td>
<td>4.28</td>
<td>–</td>
<td>[59]</td>
</tr>
<tr>
<td>PbS QDs</td>
<td>0.1M KOH, 0.4 V</td>
<td>12.89</td>
<td>10.97</td>
<td>3.96×10^{10}</td>
<td>[60]</td>
</tr>
<tr>
<td>Bi$_2$S$_3$ NSs</td>
<td>0.1M KOH, 0.6 V</td>
<td>11.00</td>
<td>0.052</td>
<td>3.75×10^8</td>
<td>[61]</td>
</tr>
<tr>
<td>SnS NSs</td>
<td>0.1M Na$_2$SO$_4$, 0.6 V</td>
<td>1.59</td>
<td>0.060</td>
<td>1.92×10^8</td>
<td>[62]</td>
</tr>
<tr>
<td>GeS NSs</td>
<td>0.5M KOH, 0.6 V</td>
<td>8.57</td>
<td>0.032</td>
<td>3.71×10^7</td>
<td>[63]</td>
</tr>
<tr>
<td>Bi$_2$O$_2$S</td>
<td>1.0M KOH, 0.6 V</td>
<td>9.56</td>
<td>13.00</td>
<td>2.34×10^{10}</td>
<td>[64]</td>
</tr>
<tr>
<td>InSe NSs</td>
<td>0.2M KOH, 1.0 V</td>
<td>0.38</td>
<td>0.005</td>
<td>–</td>
<td>[65]</td>
</tr>
<tr>
<td>GeSe NSs</td>
<td>0.1M KOH, 0.3 V</td>
<td>4.40</td>
<td>43.60</td>
<td>6.28×10^{10}</td>
<td>[66]</td>
</tr>
<tr>
<td>PbSe NCs</td>
<td>0.1M KOH, 0.4 V</td>
<td>11.88</td>
<td>12.37</td>
<td>–</td>
<td>[67]</td>
</tr>
<tr>
<td>Bi$_2$Te$_3$ NPs</td>
<td>0.5M KOH, 0.6 V</td>
<td>8.68</td>
<td>0.40</td>
<td>–</td>
<td>[68]</td>
</tr>
<tr>
<td>SnS$_2$ QDs</td>
<td>0.1M KOH, 0.6 V</td>
<td>3.55</td>
<td>0.19</td>
<td>7.02×10^8</td>
<td>This work</td>
</tr>
<tr>
<td>SnS$_2$ QDs</td>
<td>0.5M KOH, 0.6 V</td>
<td>16.38</td>
<td>0.86</td>
<td>5.83×10^9</td>
<td>This work</td>
</tr>
</tbody>
</table>

in 0.1 M KOH and 0.6 V as demonstrated in Figure 5b. There was no much difference in $t_{\text{res}}/t_{\text{rec}}$ under different test conditions, indicating a fast photoresponse behavior of SnS$_2$ QDs-based PDs under various wavelengths. The estimated $t_{\text{res}}/t_{\text{rec}}$ under the irradiation of 475 nm are 0.11/0.13 s, which are lower than most currently reported PEC-type PDs, including G$_2$O$_3$ films [69], BP NSs [70] and GaSe nanoflakes [71]. As shown in Figure 5c, the electrochemical impedance spectroscopy (EIS) of SnS$_2$ QDs electrodes in different concentrations of KOH electrolytes revealed the recombination dynamics at the PD-electrolyte interface under the darkness. The interfacial resistance between the PDs and electrolytes decreased with the increase of KOH concentrations. Smaller interfacial resistance values facilitate electron transfer and thus improve the photovoltaic performance [72].

The long-term stability of SnS$_2$ QDs-based PDs was evaluated both initially and after 1 months in 0.1 M KOH under mixed light. Figure 5d indicates no significant degradation for virgin SnS2 QDs samples (Figure 4d), which decreased by approximately 32.21% after 1 month and remained at an acceptable level. As the test time continuously increased, P_{ph} exhibited a gradual decrease, mainly caused by the detachment of the SnS$_2$ QDs sample
from the ITO glass substrate. The long-term stability of SnS$_2$ QDs can be effectively utilized for practical PEC-type devices, including new nucleic acid tests [73], biosensors [74] and bioanalysis [75].

4 Conclusions

In summary, ultrasmall and high-quality SnS$_2$ QDs with a uniform horizontal dimension of 3.17 nm and thickness of 2.39 nm (four layers) were successfully prepared by combining top–down and bottom–up approaches. The as-prepared SnS$_2$ QDs was employed to make a series of PEC-type photodetectors (PDs), which were systematically characterized under varying monochromatic lights, electrolytes and bias voltages. The SnS$_2$ QDs-based PDs exhibited a high responsivity of 0.86 mA/W, a high detectivity of 5.83×1010 Jones, and good long-term stability, which are better than most previously reported PEC-type PDs. The excellent and stable periodic optoelectronic performance of SnS$_2$ QD-based PDs in different electrolytes was explained by the corresponding band structures using density functional theory. The facile approach of preparing the SnS$_2$ QDs can be employed for the preparation of other low-dimensional metal dichalcogenides QDs with high optoelectronic performances.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This research was funded by Science and Technology Innovation Council of Shenzhen under Grant Nos. JCYJ20200109105212568, 20200812203318002, JCYJ2020010914237902, KQTD2017081010543948 and the joint funding program of Guangdong Department of Science and Technology and Hongkong Innovation and Technology Fund under Grant No. 2021A050510015, the Natural Science Foundation of Guangdong Province under Grant No. 2019A1515010790.

Conflict of interest statement: The authors declare no conflict of interests.

References

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/nanoph-2022-0277).