Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 23, 2015

On the SERS depolarization ratio

  • Antonino Foti , Cristiano D’Andrea , Elena Messina , Alessia Irrera , Onofrio M. Maragò , Barbara Fazio and Pietro G. Gucciardi
From the journal Nanospectroscopy


The Raman depolarization ratio is a quantity that can be easily measured experimentally and offers unique information on the Raman polarizability tensor of molecular vibrations. In Surface Enhanced Raman Scattering (SERS), molecules are near-field coupled with optical nanoantennas and their scattering properties are strongly affected by the radiation patterns of the nanoantenna. The polarization of the SERS photons is consequently modified, affecting, in a non trivial way, the measured value of the SERS depolarization ratio. In this article we elaborate a model that describes how the SERS depolarization ratio is influenced by the nanoantenna re-radiation properties, suggesting how to retrieve information on the Raman polarizability from SERS experiments.


[1] Novotny, L. and Van Hulst, N. (2011) Antennas for light, Nat. Photonics, 5, pp. 83-90. 10.1038/nphoton.2010.237Search in Google Scholar

[2] Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. (2010) Plasmonics for extreme light concentration and manipulation, Nat. Mater., 9, pp. 193-204. Search in Google Scholar

[3] Moskovits, M. (1985) Surface-Enhanced Raman Spectroscopy. Rev. Mod. Phys. 57, pp. 783–826. 10.1103/RevModPhys.57.783Search in Google Scholar

[4] Le Ru, E.; Etchegoin, P. (2009) Principles of Surface Enhanced Raman Spetroscopy (Elsevier, Amsterdam). 10.1016/B978-0-444-52779-0.00005-2Search in Google Scholar

[5] Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. (1992). Surfaceenhanced Raman scattering. J. Phys. Condens. Mat., 4, pp. 1143-1212. 10.1088/0953-8984/4/5/001Search in Google Scholar

[6] Geddes, C. D.; Lakowicz, J. R. (2002) Metal-enhanced fluorescence, J. Fluoresc., 12, pp. 121-129. 10.1023/A:1016875709579Search in Google Scholar

[7] Farahani, J.N.; Pohl, D.W.; Eisler, H.J.; Hecht, B. (2005) Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter, Phys. Rev. Lett., 95, 017402. Search in Google Scholar

[8] Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mullen, K.; Moerner, W. E. (2005) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics 2009, 3, 654-657. Search in Google Scholar

[9] Hartstein, A.; Kirtley, R. J.; Tsang, C. J. (1980) Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers, Phys. Rev. Lett., 45, pp. 201-204. 10.1103/PhysRevLett.45.201Search in Google Scholar

[10] Neubrech, F.; Pucci, A.; Cornelius, T.W.; Karim, S.; Garcia- Etxarri, A.; Aizpurua, J. (2008) Resonant Plasmnic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection, Phys. Rev. Lett., 101, art no. 157403. Search in Google Scholar

[11] Homola, J. (2008) Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, pp. 462-493. Search in Google Scholar

[12] Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D., (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology, Curr. Opin. Biotech., 16, pp. 55-62. 10.1016/j.copbio.2005.01.001Search in Google Scholar PubMed PubMed Central

[13] Xie, W.; Schlucker, S. (2013) Medical applications of surfaceenhanced Raman scattering, Phys. Chem. Chem. Phys., 15, pp. 5329-5344. 10.1039/c3cp43858aSearch in Google Scholar PubMed

[14] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. (2008) Biosensing with plasmonic nanosensors, Nat. Mater., 7, pp. 442-453. Search in Google Scholar

[15] D’Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech, F.; Messina, E.; Fazio, B.; Marago, O. M.; Di Fabrizio, E.; de la Chapelle, M. L.; Gucciardi, P.G.; Pucci, A. (2013) Optical Nanoantennas for Multiband Surface-Enhanced Infrared and Raman Spectroscopy. ACS Nano, 7, pp. 3522-3531 10.1021/nn4004764Search in Google Scholar PubMed

[16] Foti, A.; D’Andrea, C.; Bonaccorso, F.; Lanza, M.; Calogero, G.; Messina, E.; Maragò, O. M.; Fazio, B.; Gucciardi, P. G. (2013) A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared, Plasmonics, 8, pp. 13-23. Search in Google Scholar

[17] Messina, E., Cavallaro, E., Cacciola, A., Saija, R., Borghese, F., Denti, P., Fazio, B., D’Andrea, C., Gucciardi, P. G., Iatì, M. A., Meneghetti, M., Compagnini, G., Amendola, V., and Maragò, O. M. (2011). Manipulation and Raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids. J. Phys. Chem. C, 115, 5115-5122. 10.1021/jp109405jSearch in Google Scholar

[18] Le Ru, E.; Etchegoin, P. (2006) Rigorous Justification of the |E|^4 Enhancement Factor in Surface Enhanced Raman Spectroscopy, Chem. Phys. Lett., 423, pp. 63-66. Search in Google Scholar

[19] Nagasawa, F.; Takase, M.; Nabika, H.; Murakishi, K. (2011) Polarization Characteristics of Surface-Enhanced Raman Scattering from a Small Number of Molecules at the Gap of a Metal Nano-Dimer, Chem. Comm., 47, pp. 4514-4516 10.1039/c0cc05866aSearch in Google Scholar

[20] Le Ru, E. C.; Grand, J.; Félidj, N.; Aubard, J.; Lévi, G.; Hohenau, a; Krenn, J. R.; Blackie, E.; Etchegoin, P. G. (2008) Experimental Verification of the SERS Electromagnetic Model beyond the |E|^4 Approximation: Polarization Effects, J. Phys. Chem. C., 112, pp. 8117-8121. 10.1021/jp802219cSearch in Google Scholar

[21] Le Ru, E. C.; Meyer, M.; Blackie, E.; Etchegoin, P. G. (2008) Advanced Aspects of Electromagnetic SERS Enhancement Factors at a Hot Spot, J. Raman Spectrosc., 39, pp. 1127-1134 10.1002/jrs.1945Search in Google Scholar

[22] Lee, S. J.; Guan, Z.; Xu, H.; Moskovits, M. (2007) Surface- Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS, J. Phys. Chem. C, 11, pp. 17985-17988 10.1021/jp077422gSearch in Google Scholar

[23] Schatz, G. C. ; Young, M. A.; Van Duyne, R. P. (2006) Electromagnetic mechanism of SERS, Top. Appl. Phys., 103, pp. 19-45 10.1007/3-540-33567-6_2Search in Google Scholar

[24] Wokaun, A. (1984) Surface-Enhanced Electromagnetic Processes. Solid State Phys., 38, pp. 223-294 10.1016/S0081-1947(08)60314-8Search in Google Scholar

[25] Hao, E.; Schatz, G. C. (2004) Electromagnetic Fields Around Silver Nanoparticles and Dimers, J. Chem Phys., 120, pp. 357-366 10.1063/1.1629280Search in Google Scholar PubMed

[26] Schnell, M.; Garcia-Etxarri, A. ; Huber A.J.; Crozier, K.; Alkorta, J.; Aizpurua, J.; Hillenbrand, R. (2009) Controlling the Near-Field Oscillations of Loaded Plasmonic Nanoantennas, Nat. Photonics., 3, pp. 287-291 10.1038/nphoton.2009.46Search in Google Scholar

[27] Schnell, M.; Garcia-Etxarri, A. ; Alkorta, J. ; Aizpurua, J. ; Hillenbrand, R. (2010) Phase-Resolved Mapping of the Near-Field Vector and Polarization State in Nanoscale Antenna Gaps, Nano Lett., 10, pp. 3524-3528 Search in Google Scholar

[28] Quin, L. ; Zou, S. ; Xue, C. ; Atkinson, A. ; Schatz, G. C., Mirkin, C. A. (2006) Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci., 103, pp. 13300-13303 10.1073/pnas.0605889103Search in Google Scholar PubMed PubMed Central

[29] Garcia-Vidal, F. J.; Pendry, J. B. (1996) Collective Theory for Surface Enhanced Raman Scattering, Phys. Rev. Lett., 77, pp. 1163-1166 10.1103/PhysRevLett.77.1163Search in Google Scholar PubMed

[30] Nie, S. M.; Emory, S. R. (1997) Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, 275, pp. 1102-1106 Search in Google Scholar

[31] Grand, J.; De La Chapelle, M.L.; Bijeon, J.-L.; Adam, P.-M.; Vial, A.; Royer, P. (2005) Role of Localized Surface Plasmons in Surface-Enhanced Raman Scattering of Shape-Controlled Metallic Particles in Regular Arrays, Phys. Rev. B, 73, art. no. 033407 Search in Google Scholar

[32] Baik, J. M.; Lee, S. J.; Moskovits, M. (2009) Polarized Surface- Enhanced Raman Spectroscopy from Molecules Adsorbed in Nano-Gaps Produced by Electromigration in Silver Nanowires, Nano Lett., 9, pp. 672-679 Search in Google Scholar

[33] Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P.; Xu, H. X. (2008) Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems, Nano Lett., 8, pp. 2497-2502 Search in Google Scholar

[34] Shegai, T.; Li, Z.; Dadosh, T.; Zhang, Z.; Xu, H.; Haran, G. (2008) Managing Light Polarization via Plasmon-Molecule Interactions within an Asymmetric Metal Nanoparticle Trimer, Proc. Natl. Acad. Sci. U.S.A., 105, pp. 16448-16453 10.1073/pnas.0808365105Search in Google Scholar PubMed PubMed Central

[35] Bosnick, K. A.; Jiang, J.; Brus, L. E. (2002) Fluctuations and Local Symmetry in Single-Molecule Rhodamine 6G Raman Scattering on Silver Nanocrystal Aggregates, J. Phys. Chem. B, 106, pp. 8096–8099. 10.1021/jp0256241Search in Google Scholar

[36] Jiang, J.; Bosnick, K.A.; Maillard, M.; Brus, L. E. (2003) Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals, J. Phys. Chem. B, 107, pp. 9964-9972 10.1021/jp034632uSearch in Google Scholar

[37] Xu, H. X.; Käll, M. (2003) Polarization-Dependent Surface-Enhanced Raman Spectroscopy of Isolated Silver Nanoaggregates, ChemPhysChem, 4, pp. 1 001-1005 Search in Google Scholar

[38] Fazio, B.; D’Andrea, C.; Bonaccorso, F.; Irrera, A.; Calogero, G.; Vasi, C.; Gucciardi, P. G.; Allegrini, M.; Toma, A.; Chiappe, D.; Martella, C.; de Mongeot, F. B. (2011) Re-Radiation Enhancement in Polarized Surface-Enhanced Resonant Raman Scattering of Randomly Oriented Molecules on Self-Organized Gold Nanowires, ACS Nano, 5, pp. 5945-5956. Search in Google Scholar

[39] Long, D. A. (2002) The Raman Effect (Wiley and Sons) 10.1002/0470845767Search in Google Scholar

[40] Le Ru, E. C.; Etchegoin, P. G.; Grand, J.; Felidj, N.; Aubard, J.; Levi, G.; Hohenau, A.; Krenn, J. R. (2008) Surface Enhanced Raman Spectroscopy on Nanolithography-Prepared Substrates, Curr. Appl. Phys., 8, pp. 467-470 Search in Google Scholar

Received: 2014-7-21
Accepted: 2014-11-6
Published Online: 2015-3-23

© 2015 Antonino Foti et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 11.12.2023 from
Scroll to top button