Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 24, 2015

Fluorescence imaging of hybrid nanostructures composed of natural photosynthetic complexes and reduced graphene oxide

M. Twardowska , D. Chomicki , I. Kamińska , J. Niedziółka-Jönsson and S. Maćkowski
From the journal Nanospectroscopy

Abstract

Herein, we describe the results of fluorescence microscopy imaging of peridinin-chlorophyll-protein (PCP) photosynthetic complex mixed with reduced graphene oxide (rGO). Upon incorporation of rGO the fluorescence image of PCP changes substantially from one characterized by uniform intensity towards a more complex pattern. The isolated bright spots feature up to ten times higher emission intensity compared to the fluorescence of PCP in the reference sample, where no rGO was added. The number of the bright spots increases with increasing rGO concentration. At the same time the fluorescence intensity away from the bright spots in the PCP/rGO hybrid system is quenched in comparison to the PCP – only reference.

References

[1] Lakowicz, J. R. Quenching of Fluorescence. In Principles of Fluorescence Spectroscopy; 2006; pp. 277–330. 10.1007/978-0-387-46312-4_8Search in Google Scholar

[2] Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and Quenching of Single-Molecule Fluorescence. Phys. Rev. Lett. 2006, 96, 113002–1 – 113002–113004. Search in Google Scholar

[3] Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M.; Gittins, D. I. Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 2002, 89, 203002–1 – 203002– 203004. Search in Google Scholar

[4] Huang, S. T.; Shi, Y.; Li, N. B.; Luo, H. Q. Fast and Sensitive Dye-Sensor Based on Fluorescein/reduced Graphene Oxide Complex. Analyst 2012, 137, 2593–2599. Search in Google Scholar

[5] Lee, M. Y.; Kim, S. Y.; Kim, H. G.; In, I. Chemiluminescence Quenching of Luminol-Functionalized Chemically Reduced Graphene Oxide through Noncovalent Interaction. Chem. Lett. 2013, 42, 48–49. Search in Google Scholar

[6] Kim, M.-G.; Shon, Y.; Lee, J.; Byun, Y.; Choi, B.-S.; Kim, Y. B.; Oh, Y.-K. Double Stranded Aptamer-Anchored Reduced Graphene Oxide as Target-Specific Nano Detector. Biomaterials 2014, 35, 2999–3004. Search in Google Scholar

[7] Samal, M.; Mohapatra, P.; Subbiah, R.; Lee, C.-L.; Anass, B.; Kim, J. A.; Kim, T.; Yi, D. K. InP/ZnS-Graphene Oxide and Reduced Graphene Oxide Nanocomposites as Fascinating Materials for Potential Optoelectronic Applications. Nanoscale 2013, 5, 9793–9805. Search in Google Scholar

[8] Novoselov, K. S.; Geim, A.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. Search in Google Scholar

[9] Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V; Morozov, S. V; Geim, a K. Two-Dimensional Atomic Crystals. PNAS 2005, 102, 10451–10453. Search in Google Scholar

[10] De Miguel, M.; Alvaro, M.; García, H. Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir 2012, 28, 2849–2857. Search in Google Scholar

[11] Guo, X. T.; Hua Ni, Z.; Yan Liao, C.; Yan Nan, H.; Zhang, Y.; Wei Zhao, W.; Hui Wang, W. Fluorescence Quenching of CdSe Quantum Dots on Graphene. Appl. Phys. Lett. 2013, 103, 201909–1 – 201909–4. Search in Google Scholar

[12] Koppens, F. H. L.; Chang, D. E.; García de Abajo, F. J. Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Lett. 2011, 11, 3370–3377. Search in Google Scholar

[13] Gaudreau, L.; Tielrooij, K. J.; Prawiroatmodjo, G. E. D. K.; Osmond, J.; García de Abajo, F. J.; Koppens, F. H. L. Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene. Nano Lett. 2013, 13, 2030–2035. Search in Google Scholar

[14] Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene Plasmonics. Nat. Photonics 2012, 6, 749–758. Search in Google Scholar

[15] Bao, Q.; Loh, K. P. Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano 2012, 6, 3677–3694. 10.1021/nn300989gSearch in Google Scholar PubMed

[16] Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide as a Chemically Tunable Platform for Optical Applications. Nat. Chem. 2010, 2, 1015–1024. Search in Google Scholar

[17] Kim, J.; Cote, L. J.; Kim, F.; Huang, J. Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy. J. Am. Chem. Soc. 2010, 132, 260–267. Search in Google Scholar

[18] Treossi, E.; Melucci, M.; Liscio, A.; Gazzano, M.; Samorì, P.; Palermo, V. High-Contrast Visualization of Graphene Oxide on Dye-Sensitized Glass, Quartz, and Silicon by Fluorescence Quenching. J. Am. Chem. Soc. 2009, 131, 15576–15577. Search in Google Scholar

[19] Wang, Y.; Kurunthu, D.; Scott, G. W.; Bardeen, C. J. Fluorescence Quenching in Conjugated Polymers Blended with Reduced Graphitic Oxide. J. Phys. Chem. C 2010, 114, 4153–4159. Search in Google Scholar

[20] Hill, C. M.; Zhy, Y.; Pan, S. Fluorescence and Electroluminescence Quenching Evidence of Interfacial Charge Transfer in Poly(3-Hexylthiophene): Graphene Oxide Bulk Heterojunction Photovoltaic Devices. ACS Nano 2011, 5, 942–951. Search in Google Scholar

[21] Ran, C.; Wang, M.; Gao, W.; Ding, J.; Shi, Y.; Song, X.; Chen, H.; Ren, Z. Study on Photoluminescence Quenching and Photostability Enhancement of MEH-PPV by Reduced Graphene Oxide. J. Phys. Chem. C 2012, 116, 23053–23060. Search in Google Scholar

[22] Iliut, M.; Gabudean, A.-M.; Leordean, C.; Simon, T.; Teodorescu, C.-M.; Astilean, S. Riboflavin Enhanced Fluorescence of Highly Reduced Graphene Oxide. Chem. Phys. Lett. 2013, 586, 127–131. Search in Google Scholar

[23] Zhang, X.-F.; Li, F. Interaction of Graphene with Excited and Ground State Rhodamine Revealed by Steady State and Time Resolved Fluorescence. J. Photochem. Photobiol. A Chem. 2012, 246, 8–15. Search in Google Scholar

[24] Wörmke, S.; Mackowski, S.; Brotosudarmo, T. H. P.; Jung, C.; Zumbusch, A.; Ehrl, M.; Scheer, H.; Hofmann, E.; Hiller, R. G.; Bräuchle, C. Monitoring Fluorescence of Individual Chromophores in Peridinin–chlorophyll–protein Complex Using Single Molecule Spectroscopy. Biochim. Biophys. Acta - Bioenerg. 2007, 1767, 956–964. Search in Google Scholar

[25] Hofmann, E.; Wrench, P. M.; Sharples, F. P.; Hiller, R. G.; Welte, W.; Diederichs, K. Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium Carterae. Science 1996, 272, 1788–1791. Search in Google Scholar

[26] Schulte, T.; Niedzwiedzki, D. M.; Birge, R. R.; Hiller, R. G.; Polívka, T.; Hofmann, E.; Frank, H. A. Identification of a Single Peridinin Sensing Chl-a Excitation in Reconstituted PCP by Crystallography and Spectroscopy. PNAS 2009, 106, 20764–20769. Search in Google Scholar

[27] Mao, S.; Pu, H.; Chen, J. Graphene Oxide and Its Reduction: Modeling and Experimental Progress. RSC Adv. 2012, 2, 2643–2662. Search in Google Scholar

[28] Kamińska, I.; Barras, A.; Coffinier, Y.; Lisowski, W.; Niedziółka- Jönsson, J.; Woisel, P.; Lyskawa, J.; Opałło, M.; Siriwardena, A.; Boukherroub, R.; Szunerits, S. Preparation of a responsive carbohydrate-coated biointerface based on graphene/azidoterminated tetrathiafulvalene nanohybrid material, ACS Appl. Mater. Interfaces 2012, 4, 5386-5393 10.1021/am3013196Search in Google Scholar PubMed

[29) Krajnik, B.; Schulte, T.; Piątkowski, D.; Czechowski, N.; Hofmann, E.; Mackowski, S. SIL-based Confocal Fluorescence Microscope for Investigating Individual Nanostructures., Central European Journal of Physics 2011, 9, 293-299. Search in Google Scholar

[30] Fellahi, O.; Das, M. R.; Coffinier, Y.; Szunerits, S.; Hadjersi, T.; Maamache, M.; Boukherroub, R. Silicon Nanowire Arrays- Induced Graphene Oxide Reduction under UV Irradiation. Nanoscale 2011, 3, 4662–4669. Search in Google Scholar

[31] Twardowska, M.; Kamińska, I.; Wiwatowski, K.; Ashraf, K. U.; Cogdell, R. J.; Mackowski, S.; Niedziółka-Jönsson, J. Fluorescence Enhancement of Photosynthetic Complexes Separated from Nanoparticles by a Reduced Graphene Oxide Layer. Appl. Phys. Lett. 2014, 104, 093103. Search in Google Scholar

Received: 2014-6-20
Accepted: 2014-12-7
Published Online: 2015-3-24

© 2015 M. Twardowska et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/nansp-2015-0002/html
Scroll Up Arrow