Abstract
Metallic nanoparticles and nanoantennas have been extensively studied due to their capability to increase electromagnetic field confinement which is essential in numerous applications ranging from optoelectronics to telecommunication and sensing devices. We show that a double bowtie nanoantenna has a higher electric field confinement in its gap compared to a single bowtie nanoantenna, which is expected to give better fluorescence enhancement of a single emitter placed in the gap. We show that the electric field intensity can be further increased by placing the double bowtie inside a ring grating structure where the excitation of surface plasmon-polaritons (SPPs) is achieved. We perform FDTD simulations to characterise the double bowtie nanoantenna and study the effect of its dimensions on the electric field enhancement in the gap. Our proposed integrated structure with gratings is shown to increase the electric field by a factor of 77 due to a double cavity effect. Next steps would be to study the fluorescence enhancement of emitters placed inside our double bowtie / ring grating nanocavity to see if the strong coupling regime can be attained.
References
[1] Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Nat. Photonics 2009, 3 (11), 654–657. 10.1038/nphoton.2009.187Search in Google Scholar
[2] Farahani, J. N.; Pohl, D. W.; Eisler, H.-J.; Hecht, B. Phys. Rev. Lett. 2005, 95 (1), 017402. Search in Google Scholar
[3] Aouani, H.; Rahmani, M.; Navarro-Cía, M.; Maier, S. A. Nat. Nanotechnol. 2014, 9 (4), 290–294. Search in Google Scholar
[4] Biagioni, P.; Huang, J.; Duò, L.; Finazzi, M.; Hecht, B. Phys. Rev. Lett. 2009, 102 (25), 256801. Search in Google Scholar
[5] Gao, Z.; Shen, L.; Li, E.; Xu, L.; Wang, Z. J. Light. Technol. 2012, 30 (6), 829–833. Search in Google Scholar
[6] Kumar V., D.; Bhardwaj, A.; Mishra, D. Micro Nano Lett. 2011, 6 (2), 94. Search in Google Scholar
[7] Di Martino, G.; Sonnefraud, Y.; Kéna-Cohen, S.; Tame, M.; Özdemir, Ş. K.; Kim, M. S.; Maier, S. A. Nano Lett. 2012, 12 (5), 2504–2508. Search in Google Scholar
[8] Steele, J. M.; Liu, Z.; Wang, Y.; Zhang, X. Opt. Express 2006, 14 (12), 5664–5670. 10.1364/OE.14.005664Search in Google Scholar
[9] Wang, D.; Yang, T.; Crozier, K. B. Opt. Express 2011, 19 (3), 2148–2157. 10.1364/OE.19.002148Search in Google Scholar PubMed
[10] Kinzel, E. C.; Srisungsitthisunti, P.; Li, Y.; Raman, A.; Xu, X. Appl. Phys. Lett. 2010, 96 (21), 211116. Search in Google Scholar
[11] Chang, D.; Sørensen, A.; Hemmer, P.; Lukin, M. Phys. Rev. B 2007, 76 (3), 035420. 10.1103/PhysRevB.76.035420Search in Google Scholar
[12] Törmä, P.; Barnes, W. L. ArXiv Prepr. ArXiv14051661 2014. Search in Google Scholar
[13] Bellessa, J.; Bonnand, C.; Plenet, J.; Mugnier, J. Phys. Rev. Lett. 2004, 93 (3). 10.1103/PhysRevLett.93.036404Search in Google Scholar PubMed
[14] Stokes, J. L.; Yu, Y.; Yuan, Z. H.; Pugh, J. R.; Lopez-Garcia, M.; Ahmad, N.; Cryan, M. J. J. Opt. Soc. Am. B 2014, 31 (2), 302. 10.1364/JOSAB.31.000302Search in Google Scholar
[15] Hatab, N. A.; Hsueh, C.-H.; Gaddis, A. L.; Retterer, S. T.; Li, J.-H.; Eres, G.; Zhang, Z.; Gu, B. Nano Lett. 2010, 10 (12), 4952–4955. Search in Google Scholar
[16] Jiunn-Woei Liaw. IEEE J. Sel. Top. Quantum Electron. 2008, 14 (6), 1441–1447. 10.1109/JSTQE.2008.916755Search in Google Scholar
[17] Dodson, S.; Haggui, M.; Bachelot, R.; Plain, J.; Li, S.; Xiong, Q. J. Phys. Chem. Lett. 2013, 4 (3), 496–501. Search in Google Scholar
[18] Grosjean, T.; Mivelle, M.; Baida, F. I.; Burr, G. W.; Fischer, U. C. Nano Lett. 2011, 11 (3), 1009–1013. Search in Google Scholar
© 2015 N. Rahbany et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.