Abstract
Metal nanoshells having a dielectric core with a thin gold layer are generating new interest due to the unique optical, electric and magnetic properties exhibited by the local field enhancement near the metal – dielectric core interface. These nanoshells possess strong, highly tunable local plasmon resonances with frequencies dependent upon the nanoshell shape and core material. These unique characteristics have applications in biosensing, optical communication and medicine. In this paper, we developed a theoretical, numerical and experimental approach based on a scanning near optical microscope to identify nanoshells inside mouse cells. Taking advantage of the characteristic near-infrared transparency window of many biological systems, i.e. the low light absorption coefficient of biological systems between 750−1100 nm, we were able to identify a 100−150 nm diameter barium titanate-gold nanoshell inside the h9c2 mouse cells.
References
[1] Kelly K.L., Coronado E., Zhao L.L., Schatz G.C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B, 2003, 107, 668-677. 10.1021/jp026731ySearch in Google Scholar
[2] Myroshnychenko V., Rodríguez-Fernández J., Pastoriza-Santos I., Funston A.M., Novo C, et al., Modelling the optical response of gold nanoparticles, Chem. Soc. Rev., 2008, 37, 1792-1805. 10.1039/b711486aSearch in Google Scholar PubMed
[3] Jackson J.B., Westcott S.L., Hirsch L.R., West J.L., Halas N.J., Controlling the Surface Enhanced Raman Effect via the Nanoshell Geometry.Appl. Phys. Lett., 2003, 82, 257-259. 10.1063/1.1534916Search in Google Scholar
[4] Hirsch L.R., Gobin A.M., Lowery A.R., Tam F., Drezek R.A., Halas N.J., West J.L., Metal Nanoshells, Ann. Biomed. Eng, 2006, 34, 15-22. 10.1007/s10439-005-9001-8Search in Google Scholar PubMed
[5] Lin A.W.H., Halas N.J., Drezek R.A., Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells, J. Biomed Opt. 2005, 10, 064301-064305. Search in Google Scholar
[6] Liu C., Mi C.C., Energy absorption of gold nanoshells in hyperthermia therapy, IEEE Transactions of Nanobioscience, 2008, 7, 206-214 10.1109/TNB.2008.2002284Search in Google Scholar PubMed
[7] Konig K., Multiphoton microscopy in life sciences, J. Microscopy, 2000, 200, 83-104. 10.1046/j.1365-2818.2000.00738.xSearch in Google Scholar PubMed
[8] Mie G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys. (Leipzig), 1908, 25, 377-445. 10.1002/andp.19083300302Search in Google Scholar
[9] Zavelani-Rossi M., Celebrano M., Biagioni P., Polli D., Finazzi M., Duò L., et al., Near-field second-harmonic generation in single gold nanoparticles, Applied Physics Letters, 2008, 92, 093119 (1-3). 10.1063/1.2889450Search in Google Scholar
[10] Fan P., Chettair U.K., Cao L., Afshinmanesh F., Engheta N., Brongersma M.L., An invisible metal–semiconductor photodetector, Nature Photonics, 2012, 6, 380-385. 10.1038/nphoton.2012.108Search in Google Scholar
[11] Feng J., Siu V. Roelke A., Metha V., Rhieu S.Y., Palmore G.T.R, Pacifici D., Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing, Nano Letters, 2012, 12, 602-609. 10.1021/nl203325sSearch in Google Scholar PubMed
[12] Chen Y.F., Serey X., Sarkar R., Chen P., Erickson D., Controlled photonic manipulation of proteins and other nanomaterials, Nano Letters, 2012, 12, 1633-1637. 10.1021/nl204561rSearch in Google Scholar PubMed PubMed Central
[13] Stratton J.A., Electromagnetic Theory, McGraw-Hill, New York, (1941). Search in Google Scholar
[14] Sarkar D., Halas N.J., General vector basis function solution of Maxwell’s equations, Physical Review E, 1997, 56, 1102-1112. 10.1103/PhysRevE.56.1102Search in Google Scholar
[15] Le D., SURE Project, Spectroscopic Characterization of Silica-Gold Nanoshells, available at http://www.cmmp.ucl. ac.uk/~mdl/cam/Mie/nanoshells.pdf Search in Google Scholar
[16] D’Acunto M., Moroni D., Salvetti O., Nanoscale Biomolecular detection limit for gold Nanoparticles based on Near-Infrared response, Advances in Optical Technologies, 2012, 278194(1-8). 10.1155/2012/278194Search in Google Scholar
[17] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series and Products, Seventh Edition, A. Jeffrey and D. Zwillinger eds., 2007. Search in Google Scholar
[18] Wannemacher R., Quinten M., Pack A., Evanescent-wave scattering in near-field optical microscopy, Journal of Microscopy, 1999, 194, 260-264. 10.1046/j.1365-2818.1999.00519.xSearch in Google Scholar PubMed
[19] Quinten M., Pack A., Wannemacher R., Scattering and extinction of evanescent waves by small particles, Appl. Physics B, 199, 68, 87-92. 10.1007/s003400050591Search in Google Scholar
[20] Quinten M., Evanescent wave scattering by aggregates of clusters-application to optical near-field microscopy, Appl. Physics B, 2000, 70, 579-586. 10.1007/s003400050865Search in Google Scholar
[21] Bekshaev A.Y., Bliokh K.Y., Nori F., Mie scattering and optical forces from evanescent fields: A complex-angle approach, Optics Express, 2013, 21, 7982-7095. 10.1364/OE.21.007082Search in Google Scholar PubMed
[22] Dvorák P., Neuman T., Brínek L., Šamoril T., Kalousek R., et al., Control and Near-Field Detection of Surface Plasmon Interference Patterns, NanoLetters, 2013, 13, 2558-2563. 10.1021/nl400644rSearch in Google Scholar PubMed
[23] Nedyalkov N.N, Dikovska A., Dimitrov I., Nikov R., Atanasov P.A., et al., Far- and near-field optical properties of gold nanoparticle ensembles, Quantum Electronics, 2012, 42, 1123-1127. 10.1070/QE2012v042n12ABEH014932Search in Google Scholar
[24] Duff D.G., Baiker A., Edwards P.P., A new hydrosol of gold clusters, 1. Formation and particle size variation, Langmuir, 1993, 9, 2301-2309; Duff D.G., Baiker A., Gameson I., Edwards P.P., A new hydrosol of gold clusters, 2. A comparison of some different measurement techniques, Langmuir, 1993, 9, 2310-2317. Search in Google Scholar
[25] Farrokh Takin E., Ciofani G., Puleo G. , de Vito G., Filippeschi C., et al., Barium titanate core-gold shell nanoparticles for hyperthermia treatments, International Journal of Nanomedicine, 2013, 8, 2319-2331. 10.2147/IJN.S45654Search in Google Scholar PubMed PubMed Central
[26] Cricenti A., Marocchi V., Generosi R., Luce M., Perfetti P., et al., Optical nanospectroscopy study of ion-implanted silicon and biological growth medium, Journal of Alloys and Compounds, 2004, 362, 21-25. 10.1016/S0925-8388(03)00557-7Search in Google Scholar
[27] Schaafsma D.T., Mossadegh R., Sanghera J.S., Aggarwal I.D., Gilligan J.M., et al., Single mode chalcogenide fiber infrared SNOM probes, Ultramicroscopy 1999, 77, 77-81. 10.1016/S0304-3991(99)00004-2Search in Google Scholar
[28] Cricenti A., Luce M., Moroni D., Salvetti O., D’Acunto M., Ultrasmall clusters of gold nanoshells detected by SNOM, Optoelectronics Review 2015, 23, 39-45. 10.1515/oere-2015-0010Search in Google Scholar
[29] Keilmann F., Hilenbrand R., Near-field microscopy by elastic light scattering from a tip, Philosophical Transactions, Series A, Mathematical, physical and engineering sciences, 2004, 362, 787-805. 10.1098/rsta.2003.1347Search in Google Scholar PubMed
© 2015 Mario D’Acunto, et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.