Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 8, 2016

Hybrid silica-gold core-shell nanoparticles for fluorescence enhancement

  • J. Grzelak , A. Krajewska , B. Krajnik , D. Jamiola , J. Choma , B. Jankiewicz , D. Piątkowski , P. Nyga and S. Mackowski
From the journal Nanospectroscopy


We demonstrate that SiO2 nanoparticles coated with a gold island film (GIF) provide an efficient plasmonic platform for enhancing fluorescence intensity of chlorophyll-containing photosynthetic complexes. Fluorescence images obtained for single SiO2-Au coreshell nanoparticles mixed with photosynthetic complexes reveal very uniform emission patterns of a circular shape, similarly as observed for bare SiO2 nanoparticles. The fluorescence enhancement of chlorophyll emission for SiO2-Au nanostructures is up to four-fold compared to bare SiO2 nanoparticles and shortening of fluorescence decay indicates its plasmonic origin. For doublets or triplets of core-shell SiO2-Au nanoparticles, the intensity of emission is further increased as a result of hot-spot formation at the interfaces of such assemblies.


[1] Lakowicz J.R., (2001). Radiative Decay Engineering: Biophysical and Biomedical Applications, Analytical Biochemistry, 298(1), 1–24. 10.1006/abio.2001.5377Search in Google Scholar PubMed PubMed Central

[2] P. Zijlstra, P. M. R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nature Nanotechnology, 7, 379–382 (2012) Search in Google Scholar

[3] P. Bharadwaj, L. Novotny, ‘Spectral Dependence of Single Molecule Fluorescence Enhancement’, Opt. Express, 15, 14266 (2007). 10.1364/OE.15.014266Search in Google Scholar PubMed

[4] L.M. Liz-Marzan, ‘Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles’, Langmuir, 22, 32 (2005). 10.1021/la0513353Search in Google Scholar PubMed

[5] Y. Fu, J. Lakowicz, J. Phys. Chem. B 110, 22557 (2006) 10.1021/jp060402eSearch in Google Scholar PubMed PubMed Central

[6] Bujak L., Czechowski N., Piatkowski D., Litvin R., Mackowski S., Brotosudarmo T.H.P., Cogdell R.J., Pichler S., Heiss W., (2011). Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles, Appl. Phys. Lett., 99, 173701/1-3 Search in Google Scholar

[7] S. Mackowski. Metallic nanoparticles coupled to photosynthetic complexes, Smart Nanoparticles Technology, ISBN 978-953-51-0500-8, ed. A. Hashim, InTech Publishing (2012) 3-28 and references therein Search in Google Scholar

[8] D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, H. Rigneault, Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence, Optics Express, 16, 15297 (2008) 10.1364/OE.16.015297Search in Google Scholar PubMed

[9] Weiqiang Mu, Dae-Kue Hwang, Robert P. H. Chang, Maxim Sukharev, Daniel B. Tice, John B. Ketterson, Surface-enhanced Raman scattering from silver-coated opals, J. Chem. Phys. 134, 124312 (2011). Search in Google Scholar

[10] B. Krajnik, M. Gajda-Rączka, D. Piątkowski, P.Nyga, B. Jankiewicz, E. Hofmann, S. Mackowski, “Silica nanoparticles as a tool for fluorescence enhancement”, Nanoscale Research Letters 8, 146-152 (2013) Search in Google Scholar

[11] M.K. Schmidt, R. Esteban, J.J. Saenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas - a suitable platform for a control of magnetic dipolar emission”, Optics Express, 20, 13636-13650 (2012) Search in Google Scholar

[12] J. Choma, A. Dziura, D. Jamioła, P. Nyga, M. Jaroniec, Preparation and properties of silica–gold core–shell particles, Colloids and Surfaces A: Physicochem. Eng. Aspects 373 (2011) 167–171 10.1016/j.colsurfa.2010.10.046Search in Google Scholar

[13] Miller D.J., Catmull J., Puskeiler R., Tweedale H., Sharples F.P., Hiller R.G., (2005). Reconstitution of the Peridinin– chlorophyll a Protein (PCP): Evidence for Functional Flexibility in Chlorophyll Binding, Photosynthesis Research, 86(1), 229–240. Search in Google Scholar

[14] T.H.P. Brotosudarmo, E. Hofmann, R.G. Hiller, S. Wörmke, S. Mackowski, A. Zumbusch, C. Bräuchle, H. Scheer, “Peridinin- Chlorophyll-Protein Reconstituted with Chlorophyll Mixtures: Preparation, Bulk and Single Molecule Spectroscopy”, FEBS Letters 580, 5257-5262 (2006) Search in Google Scholar

[15] V. Antochshuk, M. Jaroniec, Adsorption, thermogravimetric, and NMR studies of FSM-16 material functionalized with alkylmonochlorosilanes, J. Phys. Chem. B 103 (1999) 6252–6261 10.1021/jp990314cSearch in Google Scholar

[16] Krajnik B., Schulte T., Piątkowski D., Czechowski N., Hofmann E., Mackowski S., (2011). SIL-based confocal fluorescence microscope for investigating individual nanostructures, Central European Journal of Physics, 9(2), 293–299. Search in Google Scholar

[17] Hofmann E., Wrench P.M., Sharples F.P., Hiller R.G., Welte W., Diederichs K., (1996). Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae, Science, 272(5269), 1788–1791. 10.1126/science.272.5269.1788Search in Google Scholar PubMed

[18] L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, R. P. Van Duyne, Nanomedicine, 6, 1447 (2011). 10.2217/nnm.11.117Search in Google Scholar PubMed

[19] S. Mackowski, S. Wörmke, T.H.P. Brotosudarmo, C. Jung, R.G. Hiller, H. Scheer, C. Bräuchle, “Energy Transfer in Reconstituted Peridinin-Chlorophyll-Protein Complexes: Ensemble and Single Molecule Spectroscopy Studies”, Biophysical Journal 93, 3249-3258 (2007) Search in Google Scholar

Received: 2015-6-1
Accepted: 2016-4-5
Published Online: 2016-6-8

© 2016 J. Grzelak et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.2.2024 from
Scroll to top button