Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 8, 2016

Hybrid silica-gold core-shell nanoparticles for fluorescence enhancement

J. Grzelak, A. Krajewska, B. Krajnik, D. Jamiola, J. Choma, B. Jankiewicz, D. Piątkowski, P. Nyga and S. Mackowski
From the journal Nanospectroscopy


We demonstrate that SiO2 nanoparticles coated with a gold island film (GIF) provide an efficient plasmonic platform for enhancing fluorescence intensity of chlorophyll-containing photosynthetic complexes. Fluorescence images obtained for single SiO2-Au coreshell nanoparticles mixed with photosynthetic complexes reveal very uniform emission patterns of a circular shape, similarly as observed for bare SiO2 nanoparticles. The fluorescence enhancement of chlorophyll emission for SiO2-Au nanostructures is up to four-fold compared to bare SiO2 nanoparticles and shortening of fluorescence decay indicates its plasmonic origin. For doublets or triplets of core-shell SiO2-Au nanoparticles, the intensity of emission is further increased as a result of hot-spot formation at the interfaces of such assemblies.


[1] Lakowicz J.R., (2001). Radiative Decay Engineering: Biophysical and Biomedical Applications, Analytical Biochemistry, 298(1), 1–24. 10.1006/abio.2001.5377Search in Google Scholar PubMed PubMed Central

[2] P. Zijlstra, P. M. R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nature Nanotechnology, 7, 379–382 (2012) Search in Google Scholar

[3] P. Bharadwaj, L. Novotny, ‘Spectral Dependence of Single Molecule Fluorescence Enhancement’, Opt. Express, 15, 14266 (2007). 10.1364/OE.15.014266Search in Google Scholar PubMed

[4] L.M. Liz-Marzan, ‘Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles’, Langmuir, 22, 32 (2005). 10.1021/la0513353Search in Google Scholar PubMed

[5] Y. Fu, J. Lakowicz, J. Phys. Chem. B 110, 22557 (2006) 10.1021/jp060402eSearch in Google Scholar PubMed PubMed Central

[6] Bujak L., Czechowski N., Piatkowski D., Litvin R., Mackowski S., Brotosudarmo T.H.P., Cogdell R.J., Pichler S., Heiss W., (2011). Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles, Appl. Phys. Lett., 99, 173701/1-3 Search in Google Scholar

[7] S. Mackowski. Metallic nanoparticles coupled to photosynthetic complexes, Smart Nanoparticles Technology, ISBN 978-953-51-0500-8, ed. A. Hashim, InTech Publishing (2012) 3-28 and references therein Search in Google Scholar

[8] D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, H. Rigneault, Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence, Optics Express, 16, 15297 (2008) 10.1364/OE.16.015297Search in Google Scholar PubMed

[9] Weiqiang Mu, Dae-Kue Hwang, Robert P. H. Chang, Maxim Sukharev, Daniel B. Tice, John B. Ketterson, Surface-enhanced Raman scattering from silver-coated opals, J. Chem. Phys. 134, 124312 (2011). Search in Google Scholar

[10] B. Krajnik, M. Gajda-Rączka, D. Piątkowski, P.Nyga, B. Jankiewicz, E. Hofmann, S. Mackowski, “Silica nanoparticles as a tool for fluorescence enhancement”, Nanoscale Research Letters 8, 146-152 (2013) Search in Google Scholar

[11] M.K. Schmidt, R. Esteban, J.J. Saenz, I. Suarez-Lacalle, S. Mackowski, J. Aizpurua, “Dielectric antennas - a suitable platform for a control of magnetic dipolar emission”, Optics Express, 20, 13636-13650 (2012) Search in Google Scholar

[12] J. Choma, A. Dziura, D. Jamioła, P. Nyga, M. Jaroniec, Preparation and properties of silica–gold core–shell particles, Colloids and Surfaces A: Physicochem. Eng. Aspects 373 (2011) 167–171 10.1016/j.colsurfa.2010.10.046Search in Google Scholar

[13] Miller D.J., Catmull J., Puskeiler R., Tweedale H., Sharples F.P., Hiller R.G., (2005). Reconstitution of the Peridinin– chlorophyll a Protein (PCP): Evidence for Functional Flexibility in Chlorophyll Binding, Photosynthesis Research, 86(1), 229–240. Search in Google Scholar

[14] T.H.P. Brotosudarmo, E. Hofmann, R.G. Hiller, S. Wörmke, S. Mackowski, A. Zumbusch, C. Bräuchle, H. Scheer, “Peridinin- Chlorophyll-Protein Reconstituted with Chlorophyll Mixtures: Preparation, Bulk and Single Molecule Spectroscopy”, FEBS Letters 580, 5257-5262 (2006) Search in Google Scholar

[15] V. Antochshuk, M. Jaroniec, Adsorption, thermogravimetric, and NMR studies of FSM-16 material functionalized with alkylmonochlorosilanes, J. Phys. Chem. B 103 (1999) 6252–6261 10.1021/jp990314cSearch in Google Scholar

[16] Krajnik B., Schulte T., Piątkowski D., Czechowski N., Hofmann E., Mackowski S., (2011). SIL-based confocal fluorescence microscope for investigating individual nanostructures, Central European Journal of Physics, 9(2), 293–299. Search in Google Scholar

[17] Hofmann E., Wrench P.M., Sharples F.P., Hiller R.G., Welte W., Diederichs K., (1996). Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae, Science, 272(5269), 1788–1791. 10.1126/science.272.5269.1788Search in Google Scholar PubMed

[18] L. B. Sagle, L. K. Ruvuna, J. A. Ruemmele, R. P. Van Duyne, Nanomedicine, 6, 1447 (2011). 10.2217/nnm.11.117Search in Google Scholar PubMed

[19] S. Mackowski, S. Wörmke, T.H.P. Brotosudarmo, C. Jung, R.G. Hiller, H. Scheer, C. Bräuchle, “Energy Transfer in Reconstituted Peridinin-Chlorophyll-Protein Complexes: Ensemble and Single Molecule Spectroscopy Studies”, Biophysical Journal 93, 3249-3258 (2007) Search in Google Scholar

Received: 2015-6-1
Accepted: 2016-4-5
Published Online: 2016-6-8

© 2016 J. Grzelak et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow