Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 28, 2016

Simple modeling of the ratio of fields at a tip and at contacting surface

E. G. Bortchagovsky
From the journal Nanospectroscopy

Abstract

The proposed concept of Raman probe for nearfield optical microscopy raises the question about the similarity of fields acting on specimens deposited at the tip apex and contacting surface. The signal generated at these two close but different points is defined by local fields, so it is the ratio of the fields at these points, that is the quantity of interest here. This work is concerned with the application of a simple dipole model for the analysis of the ratio of fields at the tip apex and at contacting surface as a function of their separation.

References

[1] Bortchagovsky E., Fischer U., The concept of a near field Raman probe, Nanoscale, 2012, 4, 885-889. 10.1039/c2nr11330aSearch in Google Scholar

[2] Lewis A., Kopelman R., A light source smaller than the optical wavelength, Science, 1990, 247, 59-61. 10.1126/science.247.4938.59Search in Google Scholar

[3] Kopelman R., Lieberman K., Lewis A., Subwavelength molecular optics: the world’s smallest light source?, Mol. Cryst. Liq. Cryst., 1990, 183, 333-340. 10.1080/15421409008047471Search in Google Scholar

[4] Bortchagovsky E.G., Fischer U.C., Schmid T., Possibilities of functionalized probes in optical near-field microscopy, Phys. Scripta, 2014, T162, 014005-1-8. 10.1088/0031-8949/2014/T162/014005Search in Google Scholar

[5] Aigouy L., Prieto P., Vitrey A., Anguita J., Cebollada A., Gonzalez M.U., Garcıa-Martın A., Labeguerie-Egea J., and Mortier M., Strong near-field optical localization on an array of gold nanodisks, J. Appl. Phys., 2011, 110, 044308-1-5. 10.1063/1.3624749Search in Google Scholar

[6] Bortchagovsky E., Schmid T., Zenobi R., Internal standard for tip-enhanced Raman spectroscopy, Appl. Phys. Lett., 2013, 103, 043111-1-3. 10.1063/1.4816589Search in Google Scholar

[7] Labani B., Girard C., Courjon D., van Labeke D., Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy, J. Opt. Soc. Am. B, 1990, 7, 936-943. 10.1364/JOSAB.7.000936Search in Google Scholar

[8] Keller O., Xiao M., Bozhevolnyi S., Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach, Surf. Sci., 1993, 280, 217-230. 10.1016/0039-6028(93)90370-YSearch in Google Scholar

[9] Jackson J.D., Classical electrodynamics, 3d ed., John Willey & Sons, New York, 1999. 10.1119/1.19136Search in Google Scholar

[10] Sivukhin D.V., The course of general physics, Vol.3, Electricity, Nauka, Moscow, 1996 (in Russian). Search in Google Scholar

[11] Metiu H., Surface enhanced spectroscopy, Prog. Surf. Sci., 1984, 17, 153-320. 10.1016/0079-6816(84)90017-0Search in Google Scholar

[12] Lindell I.V., Alanen E., Exact image theory for the Sommerfeld half-space problem, Part II: Vertical electric dipole, IEEE Trans. Antennas Propagat., 1984, 32, 841-847. 10.1109/TAP.1984.1143431Search in Google Scholar

[13] Jiang J., Bosnick K., Maillard M., Brus L., Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals, J. Phys. Chem. B, 2003, 107, 9964-9974. 10.1021/jp034632uSearch in Google Scholar

[14] Geshev P.I., Fischer U., Fuchs H., Calculation of tip enhanced Raman scattering caused by nanoparticle plasmons acting on a molecule placed near a metallic film, Phys. Rev. B, 2010, 81, 125441-1-16. 10.1103/PhysRevB.81.125441Search in Google Scholar

[15] Johnson P.B., Christy R.W., Optical constants of the noble metals, Phys. Rev. B, 1972, 6, 4370-4379. 10.1103/PhysRevB.6.4370Search in Google Scholar

[16] Raether H., Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Heidelberg, 1986. Search in Google Scholar

[17] Bortchagovsky E.G., Klein S., Fischer U.C., Surface plasmon mediated tip enhanced Raman scattering, Appl. Phys. Lett., 2009, 94, 063118-1-3. 10.1063/1.3081416Search in Google Scholar

[18] Bosi G., de Dormale B., Substrate-related effects on the optical behavior of granular surface: The Maxwell Garnett theory revisited, J. Appl. Phys., 1985, 58, 513-517. 10.1063/1.335655Search in Google Scholar

[19] Deckert-Gaudig T., Deckert V., Ultraflat transparent gold nanoplates – ideal substrates for tip-enhanced Raman scattering experiments, Small, 2009, 5, 432-436. 10.1002/smll.200801237Search in Google Scholar PubMed

[20] Maas H.-J., Naber A., Fuchs H., Fischer U.C., Weeber J.C., Dereux A., Imaging of photonic nanopatterns by scanning near-field optical microscopy, J. Opt. Soc. Am. B, 2002, 19, 1295-1300. 10.1364/JOSAB.19.001295Search in Google Scholar

Received: 2015-12-1
Accepted: 2016-2-24
Published Online: 2016-6-28

© 2016 E. G. Bortchagovsky

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow