Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 23, 2016

Nonlinear emission from silver-coated 3D hollow nanopillars

L. Ghirardini, M. Malerba, M. Bollani, P. Biagioni, L. Duò, M. Finazzi, F. De Angelis and M. Celebrano
From the journal Nanospectroscopy

Abstract

High aspect ratio metal nanostructures have been the subject of a number of studies in the past, due to their pronounced resonances in the infrared that can be exploited to enhance vibrational spectroscopies. In this work, we investigate the nonlinear optical response of both individual and closely-packed assemblies of vertical hollow Ag nanopillars upon excitation with ultrafast laser pulses. In particular, the analysis of their nonlinear emission spectra evidences an intense two photon photoluminescence (TPPL) emission and a neat signature of second harmonic generation (SHG). Given the relatively low background, this pronounced nonlinear emission could be employed as a local probe for analytes trapped at the surface of the nanopillar or flowing through it. For this reason, these nanostructures may become appealing building blocks in multi-purpose devices for nonlinear photonics and sensing.

References

[1] Novotny L., Hecht B., Principles of Nano-optics, Cambridge University Press, 2006 10.1017/CBO9780511813535Search in Google Scholar

[2] Anger P., Bharadwaj P., Novotny L., Enhancement and Quenching of Single-Molecule Fluorescence, Phys. Rev. Lett., 2006, 96, 113002 10.1103/PhysRevLett.96.113002Search in Google Scholar PubMed

[3] Kühn S., Håkanson U., Rogobete L., Sandoghdar V., Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna, Phys. Rev. Lett., 2006, 97, 017402 10.1103/PhysRevLett.97.017402Search in Google Scholar PubMed

[4] Polavarapu L., P´erez-Juste J., Xu Q.-H., Liz-Marzàn L. M., Optical sensing of biological, chemical and ionic.species through aggregation of plasmonic nanoparticles, J. Mater. Chem. C, 2014, 2, 7460–7476 10.1039/C4TC01142BSearch in Google Scholar

[5] Xie C., Hanson L., Cui Y., Cui B., Vertical nanopillars for highly localized fluorescence imaging, www.pnas.org/cgi/ doi/10.1073/pnas.1015589108 Search in Google Scholar

[6] Wang Y.-S., Shao D., Zhang L., Zhang X.-L., Li J., Feng J., Xia H., Huo Q.-S., Dong W.-F., Sun H.-B., Gold nanorods-silica Janus nanoparticles for theranostics, Appl. Phys. Lett., 2015, 106, 173705 10.1063/1.4919454Search in Google Scholar

[7] Zhang W., Saliba M., Stranks S. D., Sun Y., Shi X., Wiesner U., Snaith H. J., Enhancement of Perovskite-Based Solar Cells Employing Core−Shell Metal Nanoparticles, Nano Lett., 2013, 13, 4505−4510 10.1021/nl4024287Search in Google Scholar PubMed

[8] Schmidt M., S. Hubner J., Boisen A., Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy, Adv. Mater., 2012, 24, OP11–OP18 10.1002/adma.201103496Search in Google Scholar PubMed

[9] McPhillips J., Murphy A., Jonsson M. P., Hendren W. R., Atkinson R., Hook F., Zayats A. V., Pollard R. J., High-Performance Biosensing Using Arrays of Plasmonic Nanotubes, ACS Nano, 2010, 4, 2210–2216 10.1021/nn9015828Search in Google Scholar PubMed

[10] Malerba M., Alabastri, A., Miele, E., Zilio, P., Patrini, M., Bajoni, D., Messina, G. C., Dipalo, M., Toma, A., Proietti Zaccaria, R., and De Angelis F., 3D vertical nanostructures for enhanced infrared plasmonics, Sci. Rep., 2015, 5, 16436 10.1038/srep16436Search in Google Scholar PubMed PubMed Central

[11] Messina G. C., Dipalo M., La Rocca R., Zilio P., Caprettini V., Proietti Zaccaria R., Toma A., Tantussi F., Berdondini L., De Angelis F., Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes, Adv. Mater., 2015, 27, 7145-7149 10.1002/adma.201503252Search in Google Scholar PubMed

[12] Mesch, M., Metzger, B., Hentschel, M., Giessen, H., Nonlinear plasmonic sensing, Nano Letters, 2016, 16, 3155-3159. 10.1021/acs.nanolett.6b00478Search in Google Scholar

[13] Han, F., Guan Z., Tan T S., Xu Q.-H., Size-Dependent Two-Photon Excitation Photoluminescence Enhancement in Coupled Noble-Metal Nanoparticles, ACS Appl. Mater. Interfaces, 2012, 4, 4746−4751 10.1021/am301121kSearch in Google Scholar

[14] Imura, K., Kim, Y. C., Kim, S., Jeongc, D. H., and Okamoto, H., Two-photon imaging of localized optical fields in the vicinity of silver nanowires using a scanning near-field optical microscope, Phys. Chem. Chem. Phys., 2009, 11, 5876–5881 10.1039/b904013gSearch in Google Scholar

[15] Gong, H. M., Xiao, S., Su, X. R., Han, J. B., and Wang, Q. Q., Photochromism and two-photon luminescence of Ag-TiO2 granular composite films activated by near infrared ps/fs pulses, Opt. Express, 2007, 15, 13924- 13929 10.1364/OE.15.013924Search in Google Scholar

[16] Sachan, R., Ramos, V., Malasi, A., Yadavali, S., Bartley, B., Garcia, H., Duscher, G., Kalyanaraman, R., Oxidation-Resistant Silver Nanostructures for Ultrastable Plasmonic Applications, Adv. Mater., 2013, 25, 2045-2050. 10.1002/adma.201204920Search in Google Scholar

[17] Giliberti V., Sakat E., Baldassarre L., Di Gaspare A., Notargiacomo A., Giovine E., Frigerio J., Isella G., Melli M., and Bollani M., et al., Three-dimensional fabrication of free-standing epitaxial semiconductor nanostructures obtained by focused ion beam, Microelectronic Engineering, 2015, 141, 168–172. 10.1016/j.mee.2015.03.022Search in Google Scholar

[18] De Angelis, F., Malerba M., Patrini M., Miele E., Das G., Toma A., Proietti Zaccaria R., Di Fabrizio E., 3D Hollow Nanostructures as Building Blocks for Multifunctional Plasmonics, Nano Lett., 2013, 13, 3553−3558. 10.1021/nl401100xSearch in Google Scholar

[19] Marti O., Bielefeldt H., Hecht B., Herminghaus S., Leiderer P. and Mlynek J., Near-field optical measurement of the surface plasmon field, Opt. Comm., 1993, 96, 225-228. 10.1016/0030-4018(93)90265-7Search in Google Scholar

[20] Savage K. J., Hawkeye M. M., Esteban R., Borisov A. G., Aizpurua J., and Baumberg J. J., Revealing the quantum regime in tunnelling plasmonics, Nature, 2014, 491, 574-577 10.1038/nature11653Search in Google Scholar PubMed

[21] Ciracì, C., Urzhumov, Y., and Smith, D., Far-field analysis of axially symmetric three-dimensional directional cloaks, Opt. Express, 2013, 21, 25–28. 10.1364/OE.21.009397Search in Google Scholar PubMed

[22] Zavelani-Rossi M., Celebrano M., Biagioni P., Polli D., Finazzi M., Duò L., Cerullo G., Labardi M., Allegrini M., Grand J., et al., Near-field second-harmonic generation in single gold nanoparticles, Appl. Phys. Lett., 2008, 92, 093119 10.1063/1.2889450Search in Google Scholar

[23] Celebrano M., Biagioni P, Zavelani-Rossi M, Polli D, Labardi M, Allegrini M, Finazzi M, Duò L, Cerullo G., Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale, Rev. Sci. Instrum., 2009, 80, 033704 10.1063/1.3095556Search in Google Scholar PubMed

[24] Inouye Y. and Kawata S., Near-field scanning optical microscope with a metallic probe tip, Opt. Lett., 1994, 19, 159-161 10.1364/OL.19.000159Search in Google Scholar

[25] Labardi M., Allegrini M., Zavelani-Rossi M., Polli D., Cerullo G., De Silvestri S., and Svelto O., Highly efficient second-harmonic nanosource for near-field optics and microscopy, Opt. Lett., 2004, 29, 62-64 10.1364/OL.29.000062Search in Google Scholar PubMed

[26] Biagioni P., Brida D., Huang J.-S., Kern J., Duò L., Hecht B., Finazzi M., Cerullo G., Dynamics of Four-Photon Photoluminescence in Gold Nanoantennas, Nano Lett., 2012, 12, 2941-2947 10.1021/nl300616sSearch in Google Scholar PubMed

[27] Finazzi M., Biagioni P., Celebrano M., Duò, L. Selection rules for second harmonic generation in nanoparticles, Phys. Rev. B, 2007, 76, 125414 10.1103/PhysRevB.76.125414Search in Google Scholar

[28] Berthelot J., Bachelier G., Song M., Rai P., Colas des Francs G., Dereux A., Bouhelier A., Silencing and enhancement of secondharmonic generation in optical gap antennas, Opt. Express, 2012, 20, 10498-10508 10.1364/OE.20.010498Search in Google Scholar PubMed

[29] Black L.-J., Wiecha P. R., Wang Y., de Groot C. H., Paillard V., Girard C., Muskens O. L., Arbouet A., Tailoring Second- Harmonic Generation in Single L Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime, ACS Photonics, 2015, 2, 1592−1601. 10.1021/acsphotonics.5b00358Search in Google Scholar

[30] Celebrano M., Wu X., Baselli M., Großmann S., Biagioni P., Locatelli A., De Angelis C., Cerullo G., Osellame R., Hecht B., et al., Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation, Nat. Nanotechnol., 2015, 10, 412-417 10.1038/nnano.2015.69Search in Google Scholar PubMed

Received: 2015-12-2
Accepted: 2016-9-19
Published Online: 2016-12-23

© 2016 L. Ghirardini et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow