Crystal structure of potassium niobate, \(\text{K}_6\text{Nb}_{10.80}\text{O}_{30} \), a partially filled tetragonal tungsten bronze-type structure

P. Becker and P. Held*

Universität zu Köln, Institut für Kristallographie, Zülpicher Str. 49b, D-50674 Köln, Germany

Received December 2, 1999, CSD-No. 409464

Abstract

\(\text{K}_6\text{Nb}_{10.80}\text{O}_{30} \), tetragonal, \(P4/mmb \) (No. 127), \(a = 12.537(2) \text{ Å}, c = 3.9730(1) \text{ Å}, V = 624.5 \text{ Å}^3, Z = 1, R_{\text{st}}(F) = 0.037, wR_{\text{ref}}F^2 = 0.119, T = 293 \text{ K}. \)

Source of material

The title compound was prepared in the course of a systematic investigation of the ternary system \(\text{K}_2\text{O}-\text{Nb}_2\text{O}_5-\text{B}_2\text{O}_3 \). It crystallizes within a wide range of ternary composition: 20 mol% < \(x(\text{K}_2\text{O}) \) < 35 mol%, 8 mol% < \(x(\text{B}_2\text{O}_3) \) < 50 mol%, 22 mol% < \(x(\text{Nb}_2\text{O}_5) \) < 55 mol%, but does not occur in the binary system \(\text{K}_2\text{O}-\text{Nb}_2\text{O}_5 \). \(\text{K}_6\text{Nb}_{10.80}\text{O}_{30} \) was grown from a melt with molar composition of \(\text{Nb}_2\text{O}_5: \text{K}_2\text{CO}_3: \text{B}_2\text{O}_3 \) of 1:0.857:1 to colorless, long-prismatic crystals which were separated from the flux using hot diluted hydrochloric acid.

Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>Occ.</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U_{11})</th>
<th>(U_{22})</th>
<th>(U_{33})</th>
<th>(U_{12})</th>
<th>(U_{13})</th>
<th>(U_{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb(1)</td>
<td>2c</td>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
<td>0.0211(4)</td>
<td>0.0227(5)</td>
<td>-0.0109(4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nb(2)</td>
<td>8j</td>
<td>0.0757(5)</td>
<td>0.2074(4)</td>
<td>1/2</td>
<td>0.0155(3)</td>
<td>0.0134(3)</td>
<td>0.0317(4)</td>
<td>0.0022(2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nb(3)</td>
<td>4g</td>
<td>0.203(5)</td>
<td>0.1203(2)</td>
<td>1/2-(x)</td>
<td>0</td>
<td>0.0156(1)</td>
<td>0.0102(2)</td>
<td>-0.002(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K(1)</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0294(9)</td>
<td>0.0261(1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K(2)</td>
<td>4g</td>
<td>0.327(1)</td>
<td>1/2-(x)</td>
<td>0</td>
<td>0.0311(7)</td>
<td>0.0184(8)</td>
<td>0.0153(8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Correspondence author (e-mail: p.held@kri.uni-koeln.de)
Table 2. Continued.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{12}</th>
<th>U_{13}</th>
<th>U_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>2d</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>0.049(5)</td>
<td>0.014(4)</td>
<td>-0.001(7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O(2)</td>
<td>8i</td>
<td>0.0758(6)</td>
<td>0.2108(5)</td>
<td>0</td>
<td>0.051(4)</td>
<td>0.037(3)</td>
<td>0.008(2)</td>
<td>-0.001(3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O(3)</td>
<td>4g</td>
<td>0.2119(4)</td>
<td>1/2-x</td>
<td>1/2</td>
<td>0.010(1)</td>
<td>0.049(4)</td>
<td>-0.003(2)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>O(4)</td>
<td>8j</td>
<td>0.0000(5)</td>
<td>0.3456(4)</td>
<td>1/2</td>
<td>0.018(2)</td>
<td>0.008(2)</td>
<td>0.095(6)</td>
<td>0.002(2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O(5)</td>
<td>8j</td>
<td>0.1419(4)</td>
<td>0.0701(3)</td>
<td>1/2</td>
<td>0.015(2)</td>
<td>0.008(2)</td>
<td>0.028(2)</td>
<td>0.002(1)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

References