Pedro De-La-Torre, Margarita Gutierrez, Julio Caballero, Jorge Trilleras, Luis Astudillo, Alejandro Cardenas and Ivan Brito

Crystal structure of (E)-2-(benzo[d]thiazol-2-yl)-3-(pyridin-3-yl)acrylonitrile)

De Gruyter | 2016

Abstract

C15H9N3S, triclinic, P1̅ (no. 2), a = 9.5737(5) Å, b = 12.0958(4) Å, c = 12.2705(7) Å, α = 64.083(5) Å, β = 80.907(4) Å, γ = 82.800(4), V = 1259.44(11) Å3, Z = 4, Rgt(F) = 0.0460, wRref(F2) = 0.140, T = 293(2) K.

The crystal structure is shown in the figure, Tables 13 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal: Yellow, Block, size 0.16×0.18×0.22 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.42 cm−1
Diffractometer, scan mode: Oxford Diffraction CCD area detector diffractometer, ω scans
2θmax: 52.4°
N(hkl)measured, N(hkl)unique: 8631, 4877
N(param)refined: 343
Programs: SHELXL [18], Crysalispro[19]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom Site x y z Uiso
H(13A) 2i 0.2272 −0.2670 0.5731 0.054
H(10) 2i 0.7647 0.0826 0.5041 0.046
H(12A) 2i 0.4466 −0.2589 0.4760 0.060
H(6) 2i 0.3931 0.3229 0.1448 0.059
H(16A) 2i 0.3590 −0.4720 0.3255 0.057
H(3) 2i 0.4526 −0.0756 0.1642 0.064
H(10A) 2i 0.6234 −0.2929 0.3503 0.050
H(3A) 2i 1.1363 −0.4874 0.0575 0.074
H(13) 2i 1.0011 0.0517 0.7973 0.059
H(16) 2i 0.9348 −0.2259 0.6459 0.064
H(12) 2i 0.8619 0.1053 0.6491 0.060
H(14A) 2i 0.0709 −0.3755 0.5466 0.064
H(15A) 2i 0.1308 −0.4779 0.4254 0.064
H(6A) 2i 1.1673 −0.1465 0.1354 0.069
H(15) 2i 1.0793 −0.2793 0.7984 0.072
H(14) 2i 1.1048 −0.1389 0.8720 0.075
H(4) 2i 0.3102 0.0762 0.0304 0.071
H(5) 2i 0.2770 0.2702 0.0242 0.067
H(5A) 2i 1.3609 −0.2227 0.0449 0.074
H(4A) 2i 1.3454 −0.3900 0.0062 0.077
Table 3

Atomic displacement parameters (Å2).

Atom Site x y z U11 U22 U33 U12 U13 U23
S(1) 2i 0.58963(5) 0.16332(4) 0.33087(5) 0.0389(3) 0.0404(3) 0.0460(3) −0.0018(2) −0.0093(2) −0.0226(2)
S(1A) 2i 0.87375(6) −0.23778(6) 0.22050(6) 0.0411(3) 0.0644(4) 0.0577(3) −0.0140(2) 0.0068(2) −0.0376(3)
N(2) 2i 0.5936(2) −0.0489(2) 0.3238(2) 0.0430(9) 0.0444(9) 0.0411(9) −0.0074(7) −0.0063(7) −0.0222(7)
N(2A) 2i 0.8909(2) −0.4237(2) 0.1643(2) 0.044(1) 0.050(1) 0.049(1) −0.0023(8) 0.0004(8) −0.0224(8)
C(13A) 2i 0.2533(2) −0.3076(2) 0.5231(2) 0.039(1) 0.045(1) 0.061(1) −0.0066(8) 0.0088(9) −0.034(1)
C(1) 2i 0.6411(2) 0.0067(2) 0.3793(2) 0.0333(9) 0.042(1) 0.038(1) −0.0071(7) −0.0005(7) −0.0195(8)
C(2) 2i 0.5085(2) 0.0328(2) 0.2377(2) 0.039(1) 0.051(1) 0.036(1) −0.0111(8) −0.0011(8) −0.0202(9)
C(10) 2i 0.7880(2) −0.0015(2) 0.5324(2) 0.037(1) 0.042(1) 0.040(1) −0.0031(8) −0.0039(8) −0.0198(8)
C(12A) 2i 0.3825(2) −0.3038(2) 0.4649(2) 0.048(1) 0.049(1) 0.062(1) −0.0099(9) 0.000(1) −0.032(1)
C(8) 2i 0.7316(2) −0.0574(2) 0.4772(2) 0.0327(9) 0.041(1) 0.039(1) −0.0042(7) −0.0014(7) −0.0196(8)
N(1A) 2i 0.5657(2) −0.5378(2) 0.1888(2) 0.066(1) 0.068(1) 0.085(2) −0.008(1) −0.006(1) −0.050(1)
C(9A) 2i 0.6061(2) −0.4745(2) 0.2217(2) 0.045(1) 0.047(1) 0.051(1) −0.0043(9) −0.0005(9) −0.026(1)
C(9) 2i 0.7527(2) −0.1874(2) 0.5126(2) 0.050(1) 0.048(1) 0.054(1) −0.0016(9) −0.013(1) −0.026(1)
C(7) 2i 0.4916(2) 0.1526(2) 0.2296(2) 0.0327(9) 0.050(1) 0.037(1) −0.0089(8) 0.0009(7) −0.0186(9)
C(1A) 2i 0.8051(2) −0.3620(2) 0.2140(2) 0.042(1) 0.046(1) 0.038(1) −0.0026(8) −0.0044(8) −0.0185(9)
C(11A) 2i 0.4301(2) −0.3616(2) 0.3884(2) 0.039(1) 0.0353(9) 0.040(1) −0.0038(7) −0.0032(8) −0.0159(8)
C(6) 2i 0.4047(2) 0.2435(2) 0.1493(2) 0.040(1) 0.056(1) 0.045(1) −0.0053(9) −0.0046(9) −0.014(1)
C(7A) 2i 1.0348(2) −0.2730(2) 0.1518(2) 0.039(1) 0.063(1) 0.038(1) −0.0043(9) −0.0023(8) −0.023(1)
C(11) 2i 0.8798(2) −0.0518(2) 0.6292(2) 0.0348(9) 0.049(1) 0.037(1) −0.0072(8) −0.0026(8) −0.0195(9)
C(16A) 2i 0.3331(2) −0.4300(2) 0.3743(2) 0.044(1) 0.049(1) 0.056(1) −0.0085(9) −0.0021(9) −0.029(1)
C(3) 2i 0.4407(3) 0.0031(2) 0.1614(2) 0.057(1) 0.066(1) 0.046(1) −0.015(1) −0.008(1) −0.028(1)
C(2A) 2i 1.0238(2) −0.3747(2) 0.1291(2) 0.042(1) 0.055(1) 0.042(1) −0.0010(9) −0.0030(9) −0.017(1)
C(10A) 2i 0.5769(2) −0.3451(2) 0.3326(2) 0.041(1) 0.042(1) 0.045(1) −0.0078(8) −0.0036(8) −0.0212(9)
C(3A) 2i 1.1418(3) −0.4197(3) 0.0734(3) 0.049(1) 0.066(2) 0.065(2) 0.004(1) 0.002(1) −0.030(1)
C(8A) 2i 0.6570(2) −0.3916(2) 0.2600(2) 0.041(1) 0.040(1) 0.040(1) −0.0044(8) −0.0042(8) −0.0172(8)
C(13) 2i 0.9874(2) −0.0040(2) 0.7671(2) 0.047(1) 0.068(1) 0.044(1) −0.006(1) −0.0145(9) −0.031(1)
C(16) 2i 0.9474(3) −0.1697(2) 0.6758(2) 0.050(1) 0.057(1) 0.055(1) 0.001(1) −0.013(1) −0.025(1)
C(12) 2i 0.9055(2) 0.0263(2) 0.6794(2) 0.052(1) 0.058(1) 0.048(1) −0.005(1) −0.010(1) −0.027(1)
N(1) 2i 0.7671(3) −0.2912(2) 0.5434(3) 0.095(2) 0.048(1) 0.102(2) 0.005(1) −0.041(2) −0.036(1)
C(14A) 2i 0.1625(2) −0.3720(2) 0.5069(2) 0.039(1) 0.046(1) 0.069(2) −0.0008(9) 0.005(1) −0.024(1)
C(15A) 2i 0.1978(2) −0.4338(2) 0.4342(2) 0.043(1) 0.050(1) 0.071(2) −0.0109(9) −0.004(1) −0.028(1)
C(6A) 2i 1.1608(3) −0.2145(3) 0.1203(2) 0.046(1) 0.081(2) 0.049(1) −0.017(1) 0.001(1) −0.031(1)
C(15) 2i 1.0327(3) −0.2016(3) 0.7665(2) 0.048(1) 0.069(2) 0.052(1) 0.002(1) −0.013(1) −0.016(1)
C(14) 2i 1.0482(3) −0.1159(3) 0.8096(2) 0.046(1) 0.099(2) 0.042(1) −0.009(1) −0.011(1) −0.026(1)
C(4) 2i 0.3557(3) 0.0942(3) 0.0818(2) 0.053(1) 0.086(2) 0.042(1) −0.020(1) −0.010(1) −0.025(1)
C(5) 2i 0.3368(2) 0.2117(3) 0.0771(2) 0.042(1) 0.076(2) 0.040(1) −0.010(1) −0.0084(9) −0.013(1)
C(5A) 2i 1.2754(3) −0.2602(3) 0.0663(2) 0.040(1) 0.090(2) 0.050(1) −0.012(1) 0.001(1) −0.025(1)
C(4A) 2i 1.2662(3) −0.3612(3) 0.0430(2) 0.041(1) 0.084(2) 0.059(2) 0.004(1) 0.004(1) −0.028(1)

Source of material

The compound was obtained by Knoevenagel condensation between equimolar amounts of 2-(benzo[d]thiazol-2-yl)acetonitrile and 3-pyridinecarboxaldehyde according to literature [1]. The resulting mixtures were stirred for 18 minutes at room temperature using ethanol as solvent and catalytic amounts of triethylamine (TEA). The precipitates which formed were collected by filtration, washed with ethanol and dried, and then crystallized from ethanol giving the compound in yields of 66%; m.p. 155–157 °C; EI—MS (m/z): 263 (M+, 100), 226 (20), 210 (38). The 1H-NMR analysis of this derivative revealed a single olefinic proton at δ 8.51 associated with the formation of a single E-isomer. Crystals suitable for single-crystal X-ray diffraction were grown from solutions in ethanol.

Experimental details

H atoms were located in the difference Fourier map, but refined with fixed individual displacement parameters, using a riding mode with C—H distances of 0.93 Å with Uiso(H) values of 1.2Ueq(C).

Discussion

The heteroaryl-acrylonitriles have emerged recently as a new family of acetylcholinesterase inhibitors (AChEIs) [1, 2]. In addition, this family of compounds have been proved for having prominent biological properties as antifungal, antitumor, and antibacterial activities [3–7], as well as applications for the design of dendrimers [8] and fluorescent probes for visualizing endogenous thiols in living cells [9, 10]. They have also been reported in the literature as versatile building-blocks for molecules with potential biological or pharmaceutical applications [11–17].

In the figure there are represented two molecules in the asymmetric unit, which are connected by non-classical C—H⋯N hydrogen bond interactions. The crystal structure is further stabilized by weak π−π stacking interactions with distance Cg1—Cg2i 3.80 Å (Cg1: C11/C16; Cg2i: C2/C7, symmetry code (i): 1−x, −y, 1−z). The main difference between both molecules is the dihedral angle formed by the benzothiazolyl fragment and the pyridine ring, which showed values of 4.97(6)° and 17.59(7)° for molecules A and B, respectively. The bond lengths and angles are in the expected ranges.

Acknowledgements:

Dedicated to the memory of Professor Luis Astudillo Saavedra for his scientific career, support and fraternity. Thanks the Doctoral Program of Applied Sciences at Universidad de Talca, as well as the Chilean International Cooperation Agency (AGCI) and CONICYT-Chile for a doctoral fellowship. M.G. and L.A. thank PIEI QUIM-BIO-Utalca project 1100481, J.C. thanks FONDECYT project 1130141. I.B. thank to CONICYT, FONDEQUIP program/single crystal diffractometer/EQM130021. The authors thank the responsible editor for supplying the figure.

References

1. De-La-Torre, P.; Astudillo-Saavedra, L.; Caballero, J.; Quiroga, J.; Alzate-Morales, J. H.; Cabrera, M. G.; Trilleras, J.: A Novel Class of Selective Acetylcholinesterase Inhibitors: Synthesis and Evaluation of (E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles. Molecules 17 (2012) 12072–12085. Search in Google Scholar

2. Parveen, M.; Malla, A. M.; Alam, M.; Ahmad, M.; Rafiq, S.: Stereoselective synthesis of Z-acrylonitrile derivatives: catalytic and acetylcholinesterase inhibition studies. New J. Chem. 38 (2014) 1655–1667. Search in Google Scholar

3. Quiroga, J.; Cobo, D.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J.; et al. Synthesis and evaluation of novel E-2-(2-thienyl)- and Z-2-(3-thienyl)-3-arylacrylonitriles as antifungal and anticancer agents. Arch. Pharm. 340 (2007) 603–606. Search in Google Scholar

4. Hranjec, M.; Pavlović, G.; Marjanović, M.; Kralj, M.; Karminski-Zamola, G.: Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes: synthesis, antitumor evaluation in vitro and crystal structure determination. Eur. J. Med. Chem. 45, (2010) 2405–2417. Search in Google Scholar

5. Refaat, H. M.: Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem. 45 (2010) 2949–2956. Search in Google Scholar

6. Shaikh, A. R.; Ismael, M.; Del Carpio, C. A.; Tsuboi, H.; Koyama, M.; Endou, A.: Three-dimensional quantitative structure-activity relationship (3 D-QSAR) and docking studies on (benzothiazole-2-yl) acetonitrile derivatives as c- Jun N-terminal kinase-3 (JNK3) inhibitors. Bioorg. Med. Chem. Lett. 16 (2006) 5917–5925.. Search in Google Scholar

7. Saczewski, F.; Stencel, A.; Bieńczak, A. M.; Langowska, K. A.; Michaelis, M.; Werel, W.: Structure-activity relationships of novel heteroaryl-acrylonitriles as cytotoxic and antibacterial agents. Eur. J. Med. Chem. 43 (2008) 1847–1857. Search in Google Scholar

8. Rajakumar, P.; Kalpana, V.; Ganesan, S.; Maruthamuthu, P.: Synthesis and DSSC application of novel dendrimers with benzothiazole and triazole units. Tetrahedron Lett. 52 (2011) 5812–5816. Search in Google Scholar

9. De-la-Torre, P.; Garria-Beltran, O.; Tiznado, W.; Mena, N.; Saavedra, L. A.; Cabrera, M. G.: (E)-2-(Benzo[d]thiazol-2-yl)-3-heteroarylacrylonitriles as efficient Michael acceptors for cysteine: Real application in biological imaging. Sens. Actuators B 193 (2014) 391–399. Search in Google Scholar

10. Garria-Beltran, O.; Santos, J. G.; Fuentealba, S.; De-la-Torre, P.; Pavez, P.; Mena, N.: Mechanism study of the thiol-addition reaction to benzothiazole derivative for sensing endogenous thiols. Tetrahedron Lett. 56 (2015) 2437–2440. Search in Google Scholar

11. Beutler, U.; Fuenfschilling, P. C.; Steinkemper, A.: An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II. Org. Process Res. Dev. 11 (2007) 341–345. Search in Google Scholar

12. Quiroga, J.; Trilleras, J.; Pantoja, D.; Aboma, R.; Insuasty, B.; Nogueras, M.: Microwave-assisted synthesis of pyrazolo[3,4-b]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic P-diketones. Tetrahedron Lett. 51 (2010) 4717–4719. Search in Google Scholar

13. Quiroga, J.; Cruz, S.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J.: Three-component synthesis of hexahydropyridopyrimidine-spirocyclohexanetriones induced by microwave. Tetrahedron Lett. 47 (2006) 27–30. Search in Google Scholar

14. Jin, T.-S.; Zhang, J.-S.; Wang, A.-Q.; Li, T.-S.: Ultrasound-assisted synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Ultrason Sonochem 13 (2006) 220–224. Search in Google Scholar

15. Quiroga, J.; Trilleras, J.; Galvez, J.; Insuasty, B.; Aboma, R.; Nogueras, M.; et al. 5-Cyanoacetylpyrimidines as intermediates for 7-aryl-6-cyanopyrido[2,3-d]pyrimidin-5-ones. Tetrahedron Lett. 50 (2009) 6404–6406. Search in Google Scholar

16. Quiroga, J.; Cisneros, C.; Insuasty, B.; Abona, R.; Nogueras, M.; Sanchez, A.: A regiospecific three-component one-step cyclocondensation to 6-cyano-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-ones. Using microwaves under solvent-free conditions. Tetrahedron Lett. 42 (2001) 5625–5627. Search in Google Scholar

17. Quiroga, J.; Trilleras, J.; Insuasty, B.; Aboma, R.; Nogueras, M.; Marchal, A.; et al. A straightforward synthesis of pyrimido[4,5-b]quinoline derivatives assisted by microwave irradiation. Tetrahedron Lett. 51 (2010) 1107–1109. Search in Google Scholar

18. Sheldrick, G. M.: A short history of SHELX. Acta Cryst. A64 (2008) 112–122. Search in Google Scholar

19. Agilent (2010) CrysAlis PRO. Agilent Technologies, Yarnton, England. Search in Google Scholar