Gamal A. El-Hiti , Keith Smith , Mesfer Alamri , Ceri A. Morris , Benson M. Kariuki and Peter Kille

Crystal structure of 2-(bis(4-methoxyphenyl)amino)-2-oxoacetic acid, C16H15NO5

De Gruyter | Published online: January 20, 2017

Abstract

C16H15NO5, monoclinic, P21/n (no. 14), a = 6.7689(5) Å, b = 45.219(3) Å, c = 10.1102(6) Å, β = 101.360(7)°, V = 3033.9(4) Å3, T = 298(2) K.

CCDC no.:: 1525292

Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1

Data collection and handling.

Crystal: Colorless block
Size: 0.30 × 0.22 × 0.17 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.10 mm−1
Diffractometer, scan mode: Atlas, ω
2θmax, completeness: 58°, 97.3%
N(hkl)measured, N(hkl)unique, Rint: 15585, 6846, 0.353
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3929
N(param)refined: 403
Programs: CrysAlisPRO [18], SHELX [19], WinGX [20], CHEMDRAW Ultra [21]
Table 2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 −0.3411(7) 0.26406(10) −0.1012(4) 0.1293(17)
H1A −0.4716 0.2549 −0.1178 0.194*
H1B −0.3171 0.2728 −0.1831 0.194*
H1C −0.3359 0.2791 −0.0336 0.194*
C2 −0.2196(4) 0.22459(6) 0.0489(3) 0.0588(7)
C3 −0.0928(4) 0.20057(6) 0.0757(3) 0.0633(7)
H3 0.0066 0.1975 0.0254 0.076*
C4 −0.1137(4) 0.18125(6) 0.1767(3) 0.0610(7)
H4 −0.0282 0.1650 0.1943 0.073*
C5 −0.2587(4) 0.18557(5) 0.2517(2) 0.0477(6)
C6 −0.3827(5) 0.20947(7) 0.2264(3) 0.0724(9)
H6 −0.4807 0.2126 0.2777 0.087*
C7 −0.3637(5) 0.22914(7) 0.1245(3) 0.0789(9)
H7 −0.4489 0.2454 0.1076 0.095*
C8 −0.3962(4) 0.14275(6) 0.3527(2) 0.0507(6)
C9 −0.5151(4) 0.13514(6) 0.2117(3) 0.0504(6)
C10 −0.1313(4) 0.17106(5) 0.4890(2) 0.0496(6)
C11 0.0482(4) 0.15607(6) 0.5151(2) 0.0576(7)
H11 0.0779 0.1424 0.4531 0.069*
C12 0.1853(4) 0.16125(6) 0.6335(3) 0.0629(7)
H12 0.3077 0.1512 0.6510 0.075*
C13 0.1395(4) 0.18131(6) 0.7255(3) 0.0596(7)
C14 −0.0412(5) 0.19644(6) 0.6983(3) 0.0633(7)
H14 −0.0713 0.2101 0.7601 0.076*
C15 −0.1772(4) 0.19128(6) 0.5798(3) 0.0595(7)
H15 −0.2992 0.2014 0.5616 0.071*
C16 0.4445(5) 0.17124(8) 0.8805(3) 0.0927(11)
H16A 0.4118 0.1506 0.8745 0.139*
H16B 0.5101 0.1759 0.9711 0.139*
H16C 0.5328 0.1758 0.8198 0.139*
C17 1.5746(4) 0.04762(7) 1.5043(3) 0.0717(8)
H17A 1.5792 0.0303 1.4501 0.108*
H17B 1.6307 0.0431 1.5969 0.108*
H17C 1.6512 0.0632 1.4738 0.108*
C18 1.2664(4) 0.06381(5) 1.3672(2) 0.0468(6)

Source of material

A solution of oxalyl chloride (1 mole equivalent) in dichloromethane (DCM) was added dropwise to a solution of bis(4-methoxyphenyl)amine (1 mole equivalent) in DCM in the presence of triethylamine at room temperature. The mixture was stirred for 1.5 h and water was added. The organic layer was separated, dried over anhydrous magnesium sulfate and evaporated under reduced pressure to give the title compound in 46% yield. The low yield could be a result of half of the amine acting as a base to abstract hydrogen chloride evolved from the reaction. To investigate this issue the reaction was repeated with two equivalents of bis(4-methoxyphenyl)amine and no triethylamine. Following aqueous work-up, the crude product was obtained in 75% yield based on oxalyl chloride. Crystallization using acetonitrile gave the title compound as colorless crystals, Mp. 122–123 °C. The NMR spectra recorded at room temperature showed two sets of signals for the two aryl rings, confirming restricted rotation about the C—N bond. The barriers to free rotation in such compounds are already known to be substantial [1], [2], [3]. 1H NMR (400 MHz, DMSO-d6): δ 7.04, 6.96 (2 d, J = 8.5 Hz, 4 H, H-2/H-6), 6.86, 6.69 (2 d, J = 8.5 Hz, 4 H, H-3/H-5), 3.82, 3.71 (2 s, 6 H, OMe); 13C NMR (100 MHz, DMSO-d6): δ 164.4 (s, CO2H), 159.2 (s, C = O), 158.3 (s, C-4), 134.0, 132.8 (2 s, C-1), 129.8, 127.7 (2 d, C-2/C-6), 114.8 (2 d, C-3/C-5), 56.0, 55.8 (2 q, OMe); ES+−MS: m/z (%) 302 (MH+, 100), 288 (12), 256 (21), 228 (12); HRMS (ES+): calculated for C16H16NO5 (MH+): 302.1028; found: 302.1028. IR (FT): νmax 3300, 1740, 1713, 1665, 1500, 1366, 1167 cm−1.

Experimental details

Non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed in calculated positions and refined using a ring model. Methyl C—H bonds were fixed at 0.96 Å and displacement parameters were 1.5 times Ueq(C). The methyl groups were allowed to spin about the C—C bond. Aromatic C—H distances were set to 0.93 Å and their U(iso) parameters were set to 1.2 times Ueq(C). Hydroxyl O—H distances were set to 0.82 Å and their U(iso) set to 1.5 times Ueq(O). Crystal data, data collection and structure refinement details are summarized in Table 1.

Comment

Aryl oxamic acid derivatives have various interesting applications [4], [5], [6], [7], [8]. In addition, aryl oxamic acids can be used as intermediates for the synthesis of various classes of compounds including heterocycles [9], [10], [11], [12]. Oxamates can be synthesized by the use of various synthetic procedures [13], [14], [15], [16], [17].

In the title crystal structure, the asymmetric unit consists of two independent molecules of C16H15NO5. The oxoacetic acid fragments of the molecule are involved in intermolecular hydrogen bonding, of the type O—H⋯O, with the following geometric parameters: O4⋯O7 = 2.673(2) Å, O—H⋯O = 171.0°; and O9⋯O2 = 2.734(2) Å, O—H⋯O = 169.9° forming chains along [101].

These hydrogen bonds can be classified as medium strong. Bond lengths and angles in both crystallographically independent molecules are in the expected ranges.

Acknowledgement

We thank the EPSRC for the grant which supplied the MS instrumentation used in this study. M. Alamri thanks the Saudi Cultural Bureau, London for a scholarship and G. A. El-Hiti extends his appreciation to the Deanship of Scientific Research at King Saud University for its funding for this research through the research group project RGP-239.

References

1 Hobson, R. F.; Reeves, L. W.: Hindered rotation about the N-C bond in some vinylogous amides. J. Magn. Reson. 10 (1973) 243–252. Search in Google Scholar

2 Smith, B. D.; Goodenough-Lashua, D. M.; D’Souza, C. J. E.; Norton, K. J.; Schmidt, L. M.; Tung, J. C.: Substituent effects on the barrier to carbamate C–N rotation. Tetrahedron Lett. 45 (2004) 2747–2749. Search in Google Scholar

3 Krishnan, V. V.; Thompson, W. B.; Goto, J. J.; Maitra, K.; Maitra, S.: Modulations in restricted amide rotation by steric induced conformational trapping. Chem. Phys. Lett. 523 (2012) 124–127. Search in Google Scholar

4 Maiore, L.; Aragoni, M. C.; Carcangiu, G.; Cocco, O.; Isaia, F.; Lippolis, V.; Meloni, P.; Murru, A.; Slawin, A. M. Z.; Tuveri, E.; Woollins, J. D.; Arca, M.: Oxamate salts as novel agents for the restoration of marble and limestone substrates: case study of ammonium N-phenyloxamate. New J. Chem. 40 (2016) 2768–2774. Search in Google Scholar

5 Miskimins, W. K.; Ahn, H. J.; Kim, J. Y.; Ryu, S.; Jung, Y.-S.; Choi, J. Y.: Synergistic anti-cancer effect of phenformin and oxamate. PLOS One 9 (2014) e85576, doi: 10.1371/journal.pone.0085576. Search in Google Scholar

6 Choi, S.-R.; Beeler, A. B.; Pradhan, A.; Watkins, E. B.; Rimoldi, J. M.; Tekwani, B.; Avery, M. A.: Generation of oxamic acid libraries: antimalarials and inhibitors of plasmodium falciparum lactate dehydrogenase. J. Comb. Chem. 9 (2007) 292–300. Search in Google Scholar

7 Hargrave, K. D.; Hess, F. K.; Oliver, J. T.: N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem. 26 (1983) 1158–1163. Search in Google Scholar

8 Klaubert, D. H.; Sellstedt, J. H.; Guinosso, C. J.; Capetola, R. J.; Bell, S. C.: N-(Aminophenyl)oxamic acids and esters as potent, orally active antiallergy agents. J. Med. Chem. 24 (1981) 742–748. Search in Google Scholar

9 Wang, H.; Guo, L.-N.; Wang, S.; Duan, X.-H.: Decarboxylative alkynylation of a-keto acids and oxamic acids in aqueous media. Org. Lett. 17 (2015) 3054–3057. Search in Google Scholar

10 Loloiu, G.; Maior, O.: Isatin chemistry. Synthesis of N-methyl-2, 3-dioxo-2,3-dihydropyrrolo(2, 3-b) phenoxathiin. Rev. Roum. Chim. 42 (1997) 67–69. Search in Google Scholar

11 Molina, P.; Vilaplana, M. J.; Andreu, P. L.; Moller, J.: Oxamic acid derivatives in heterocyclic synthesis: preparation of 1,2,4-triazolo[1,5-a]pyrazine derivatives. J. Heterocycl. Chem. 24 (1984) 1281–1284. Search in Google Scholar

12 Downs, J. R.; Pastine, S. J.; Schady, D. A.; Greer, H. A.; Kelley, W.; Embree, M. C.; Townsend, J. D.; Beam, C. F.: Preparation of 1H-pyrazole-5-carboxamides from dilithiated C(α),N-phenylhydrazones and lithiated ethyl oxanilates or lithiated ethyl oxamate. J. Heterocycl. Chem. 38 (2001) 691–694. Search in Google Scholar

13 Gadge, S. T.; Kusumawati, E. N.; Harada, K.; Sasaki, T.; Nishio-Hamane, D.; Bhanage, B. M.: Synthesis of oxamate and urea by oxidative single and double carbonylation of amines using immobilized palladium metal-containing ionic liquid@SBA-15. J. Mol. Catal. A: Chem. 400 (2015) 170–178. Search in Google Scholar

14 Gadge, S. T.; Bhanage, B. M.: Pd/C-Catalyzed synthesis of oxamates by oxidative cross double carbonylation of amines and alcohols under Co-catalyst, base, dehydrating agent, and ligand-free conditions. J. Org. Chem. 78 (2013) 6793–6797. Search in Google Scholar

15 Lisnard, L.; Chamoreau, L.-M.; Li, Y.; Journaux, Y.: Solvothermal synthesis of oxamate-based helicate: temperature dependence of the hydrogen bond structuring in the solid. Cryst. Growth Des. 12 (2012) 4955–4962. Search in Google Scholar

16 Yang, G.; Zhang, H.; Huang, Y.; Chen, Z.: Synthesis of methyl N-aryl oxamate using soluble polymer support. Synth. Commun. 36 (2006) 611–619. Search in Google Scholar

17 Lesimple, P.; Bigg, D. C. H.: An improved procedure for the preparation of alkyl N-(4-aryl-2-thiazolyl)oxamates. Synthesis 1991(9) (1991) 763–764. Search in Google Scholar

18 Agilent. CrysAlisPRO. Agilent Technologies, Yarnton, England, 2014. Search in Google Scholar

19 Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122. Search in Google Scholar

20 Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854. Search in Google Scholar

21 Cambridge Soft. CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, MA, USA, 2001. Search in Google Scholar

Received: 2016-10-17
Accepted: 2017-1-3
Published Online: 2017-1-20
Published in Print: 2017-3-1

©2017 Gamal A. El-Hiti et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.