Soon Young Shin, Miri Yoo and Dongsoo Koh*

The crystal structure of ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate,
C_{20}H_{21}F_{2}NO_{4}

https://doi.org/10.1515/ncrs-2020-0566
Received November 2, 2020; accepted November 12, 2020;
published online December 10, 2020

Abstract

C_{20}H_{21}F_{2}NO_{4}, triclinic, \(P\overline{1} \) (no. 2), \(a = 8.6363(11) \) Å,
\(b = 9.9144(11) \) Å, \(c = 11.8734(15) \) Å, \(\alpha = 81.891(4) \)^\circ,
\(\beta = 72.889(4) \)^\circ, \(\gamma = 80.972(3) \)^\circ, \(V = 954.7(2) \) Å\(^3\), \(Z = 2 \),
\(R_{gt}(F) = 0.0466 \), \(wR_{ref}(F^2) = 0.1339 \), \(T = 223(2) \) K.

CCDC no.: 2043944

The molecular structure is shown in the Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

<table>
<thead>
<tr>
<th>Crystal:</th>
<th>Colourless block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>(0.25 \times 0.19 \times 0.10) mm</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>Mo (K\alpha) radiation (0.71073 Å)</td>
</tr>
<tr>
<td>(\mu):</td>
<td>0.10 mm(^{-1})</td>
</tr>
<tr>
<td>Diffractometer, scan mode:</td>
<td>PHOTON II M14, (\phi) and (\omega)</td>
</tr>
<tr>
<td>(\theta_{max}), completeness:</td>
<td>28.4(^\circ), 99%</td>
</tr>
<tr>
<td>(N(hkl){measured}), (N(hkl){unique}), (R_{int}):</td>
<td>28588, 4754, 0.039</td>
</tr>
<tr>
<td>Criterion for (I_{abs}), (N(hkl)_{gt}):</td>
<td>(I_{abs} > 2 \sigma(I_{abs})), 3493</td>
</tr>
<tr>
<td>(N(\text{param})_{refined}):</td>
<td>255</td>
</tr>
<tr>
<td>Programs:</td>
<td>Bruker [1], SHEXL [2, 3], Olex2 [4], PublCIF [5]</td>
</tr>
</tbody>
</table>

Source of material

The title compound, ethyl 2-amino-4-(3,5-difluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carboxylate, was obtained by a multicomponent reaction of ethyl 2-cyanoacetate, 3,5-difluorobenzaldehyde and 5,5-dimethylcyclohexane-1,3-dione. To a clear solution of ethyl 2-cyanoacetate (10 mmol, 1 ml) and 3,5-difluorobenzaldehyde (10 mmol, 1.42 g) in ethanol, was added 5,5-dimethylcyclohexane-1,3-dione (10 mmol, 1.4 g). The reaction mixture was refluxed for 5 h in the presence of 4-(dimethylamino)pyridine (DMAP, 1.1 mmol, 160 mg) catalyst [6]. After completion of reaction (TLC checked), the temperature of reaction mixture was cooled down to room temperature and kept for 24 h to give precipitations. The solid was filtered and recrystallized from an ethanol to give crystals of the title compound.

Experimental details

Data collections and reduction were carried out using the Bruker software APEX2 and SAINT including SADABS [1]. Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.
The multicomponent reaction (MCR) is a method of effectively producing complex compounds through a one-step reaction using three or more reactants [7]. Recently, MCR methods using microwave [8], ultrasound [9], organo-catalysts [10] have been developed to improve it. Polysubstituted 4H-pyran derivatives can also be synthesized through one-pot reaction of MCR by combination of aromatic aldehydes, cyanoacetate, and β-ketoesters. Polysubstituted 2-amino-4H-pyran-3-carboxylic acid derivatives has demonstrated wide range of pharmacological activities of anticancer [11], antidepressant [12], antimicrobial [13], enzyme-inhibitory [14]. In continuation of our research program to build a new library of heterocyclic compounds with diverse biological activities [15, 16], we synthesized the title compound via a multicomponent reaction and determined its single-crystal structure compound, C20H21F2NO4, crystallized in space group P1.

In the title compound, the 4-hydropyran (C5–C9/O2) ring is slightly twisted from planarity, with a maximum deviation of 0.113 Å at C8 (r.m.s. deviation = 0.073 Å). The dihedral angle formed between the plane of the 4-hydropyran (C5–C9/O2) ring and difluoro-phenyl moiety (C15–C20) ring is 89.6°. An intramolecular N1···H1B–O3 hydrogen bond generates a ring motif classified using the S(6) graph set descriptor according to the Etter-nomenclature. In the crystal, pairs of C4···H4B···O3 hydrogen bonds generate dimers with graph-set notation R2(16). Additional N1···H1A–O1 hydrogen bond interactions link the dimers into the chains of molecules along a axis. Geometric parameters are all in the expected ranges [6, 17].

Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors acknowledge financial support from the Basic Science Research Program (Award No. NRF-2019R1F1A1058747). S. Y. Shin was supported by the KU Research Professor Program of Konkuk University.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Comment

The multicomponent reaction (MCR) is a method of effectively producing complex compounds through a

17. Song J. Crystal structure of 2-amino-4-(4-nitro-phenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile, C_{18}H_{21}F_{2}NO_{4}, Z. *Kristallogr. NCS.* 2018, 233, 251–252.