Wang Li-Hua, Liu Li-Li, Cao Shu-Hua and Tai Xi-Shi*

Crystal structure of poly[3-carboxyadamantane-1-carboxylato-κ3O:O′:O″]-
(phenanthroline-κ2N,N′)sodium(II),
C24H23N2NaO4

https://doi.org/10.1515/ncrs-2021-0067
Received February 19, 2021; accepted March 11, 2021;
published online March 30, 2021

Abstract
C24H23N2NaO4, monoclinic, P21/c (no. 14), a = 7.5246(5) Å, b = 22.554(2) Å, c = 11.3358(9) Å, β = 91.881(7)°, V = 1922.8(3) Å³,
Z = 4, Rgt(F) = 0.0496, wRref(F²) = 0.1184, T = 100 K.

CCDC no.: 1974244

A part of the title coordination polymer is shown in the figure. Table 1 contains crystallographic data and Table 2
contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

<table>
<thead>
<tr>
<th>Crystal:</th>
<th>Colourless block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>0.12 × 0.11 × 0.09 mm</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>Mo Kα radiation (0.71073 Å)</td>
</tr>
<tr>
<td>μ:</td>
<td>0.12 mm⁻¹</td>
</tr>
<tr>
<td>Diffractometer, scan mode:</td>
<td>SuperNova, ω</td>
</tr>
<tr>
<td>Rmax, completeness:</td>
<td>25.0°, >99%</td>
</tr>
<tr>
<td>N(hkl)measured, N(hkl)unique, Rint:</td>
<td>8172, 3372, 0.046</td>
</tr>
<tr>
<td>Criterion for I<sub>obs</sub>, N(hkl)<sub>gt</sub>:</td>
<td>I<sub>obs</sub> > 2 σ(I<sub>obs</sub>), 2495</td>
</tr>
<tr>
<td>N(param)<sub>refined</sub>:</td>
<td>281</td>
</tr>
<tr>
<td>Programs:</td>
<td>Bruker [1], Olex2 [2], SHELX [3], Diamond [4]</td>
</tr>
</tbody>
</table>

Source of material

The mixture of 0.112 g 1,3-adamantanedicarboxylic acid (0.5 mmol), 0.040 g NaOH (1.0 mmol) were dissolved in
15 mL water-ethanol (v:v = 2:1) at room temperature. After 0.5 h, 0.090 g 1,10-phenanthroline monohydrate (0.5 mmol)
was added to the aforementioned solution and stirred for 6 h at 65 °C. Then the reaction mixture was cooled to room
temperature and filtered. The colorless crystals of the title compound were obtained from the filtrate in 30 days.

*Corresponding author: Tai Xi-Shi, College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061, P. R. China, E-mail: taixs@wfu.edu.cn. https://orcid.org/0000-0002-0050-1900
Wang Li-Hua, Liu Li-Li and Cao Shu-Hua, College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061, P. R. China

Open Access. © 2021 Wang Li-Hua et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Experimental details

The hydrogen atoms were positioned geometrically (C–H = 0.93–0.97 Å and O–H = 0.82 Å). Their U_{iso} values were set to 1.2U_{eq} or 1.5U_{eq} of the parent atoms.

Comment

Carboxylate metal complexes have shown excellent properties in many aspects such as catalytic properties, luminescence and magnetic properties, as well as cytotoxic activities [5–7]. Therefore, it is of great significance to continue to study the structure and properties of carboxylate metal complexes. In our previous work, some carboxylate metal complexes have been synthesized, and their structures have also been characterized [8–11]. In order to study the structures of carboxylate metal complexes, a new Na(I) carboxylate coordination polymer has been synthesized and structurally characterized.

Single-crystal X-ray diffraction reveals that the Na(I) coordination polymer features a 2D framework. The asymmetric unit contains one sodium(I) ion, one phenanthroline (phen) and one 3-carboxydamantane-1-carboxylic anion (ADA). The Na(I) center is five coordinated with three carboxylate oxygen atoms (O1, O3A, O2B) from three different mono deprotonated ADA ligands and two nitrogen atoms (N1, N2) from one phen ligand. The Na–O and Na–N distances are in the range of 2.3197(18)–2.6622(2) Å, which are comparable to other Na(I) coordination polymers. All ADA ligands possess the same coordination mode, e.g., one deprotonated carboxylate group bridges two different Na(I) ions and the other carboxylate group coordinates with another Na(I) ion [12]. The carboxylic oxygen atoms bridge the Na(I) ions to generate infinite 1D chains. These chains are further linked by the uncoordinated oxygen atoms to form an extended 2D layer. As a result, the 2D layers form a 3D supramolecular framework by the interaction of π–π stacking interactions between the phen molecules and the weak hydrogen bonding interactions.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: National Natural Science Foundation of China (No. 21171332), the Natural Science Foundation of Shandong (ZR2014BL003), the project of Shandong Province Higher Educational Science and Technology Program (J14LC01) and Science Foundation of Weifang.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References