Huaping Ren and Zong-Cheng Miao*

The crystal structure of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C\textsubscript{17}H\textsubscript{13}BN\textsubscript{2}O\textsubscript{2}

https://doi.org/10.1515/ncrs-2021-0081
Received March 4, 2021; accepted March 18, 2021; published online April 2, 2021

Abstract

C\textsubscript{17}H\textsubscript{13}BN\textsubscript{2}O\textsubscript{2}, orthorhombic, \textit{Pbca} (no. 61), \(a = 10.0820(14)\) Å, \(b = 13.1135(19)\) Å, \(c = 20.644(3)\) Å, \(V = 2729.4\) Å\(^3\), \(Z = 8\), \(R_{\text{gt}}(F) = 0.0373\), \(wR_{\text{ref}}(F^2) = 0.1005\), \(T = 193\) K.

CCDC no.: 2045077

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

In air, Bpin\{Bis(pinacolato)diboron\}–B(dan){naphthalene-1,8-diamino boronamide}; (0.1 mmol, 1.0 eq.), benzo[d][1,3]dioxol-5-amine (0.2 mmol, 2.0 eq.), TBAI (tetrabutylammonium iodide; 0.01 eq.), NaOAc (0.15 eq.), and BPO (0.01 eq.) were sequentially weighed and added to a screw-capped Schlenk tube containing a magnetic stir bar. The vessel was evacuated and refilled with nitrogen for three times. The tBuONO (0.2 eq.) and MeCN (0.6 mL) were added in turn under N\textsubscript{2} atmosphere using syringes through a septum which was temporarily used to replace the screw cap. The reaction mixture was then vigorously stirred at 80 °C for the indicated time. The resulting mixture was filtered through a pad of Celite, and the filter cake was washed with ethyl acetate (3 mL × 2). The combined filtrate was evaporated under vacuum to dryness and the residue was purified by column chromatography to yield the desired product as pink solid.

Experimental details

All the H atoms on the benzene rings were placed geometrically and refined without any constraints or restraints.

Comment

Recently, organoboron materials have caught the researchers’ eyes because of their use in material discovery, synthetic science and drug chemistry [5]. They can be used in the synthetic strategies to form new C–C bonds or C–X bonds [6, 7]. The two nitrogen atoms in the naphthalene-1,8-diaminato (dan) ligand can interact with boron to form the naphthalene-1,8-diamino boronamide (Bdan). Bdan compounds are relatively stable, and in most organic chemical reactions they can avoid unnecessary side reactions. More importantly, the Bdan group...
isotropic displacement parameters (Å²) can be converted into its corresponding boronic acids in high yield in acidic aqueous solution, and then participate in the following reactions. Because of these characteristics, they were often used in the synthesis of multiboron compounds [8–12].

There is one molecule in the asymmetric unit (see the figure). All bonds and angles in the crystal structure are within the normal range. In conclusion, we have developed a facile process for the synthesis of 2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This project was funded by the National Natural Science Foundation of China (No. 21908182) and also supported by the the Youth Innovation Team of Shaanxi Universities.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References
9. Ding S., Zhu M., Miao Z. The crystal structure of 2-(4-bromophenyl)-2,3- dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine, C_{24}H_{25}BN_{2}O_{2}. Z. Kristallogr. NCS 2021, 236, 383–384.