Qing-Lin Yang, Peng-Kun Fu, Ding-Qi Xiong, Xiao-Yu Zhang, Mei-Mei Jia and Xiu-Yan Dong*

Synthesis and crystal structure of poly[(μ₃-2-(2-carboxylatophenyl)-1H-benzo[d]imidazole-5-carboxylato-κO,O′:O′′:O″)-(μ₂-1-(4-(1Himidazol-1-yl)phenyl)-1H-imidazole-κ²N:N′)] cadmium(II)], C₂₇H₁₈CdN₆O₄

https://doi.org/10.1515/ncrs-2021-0098

Received March 19, 2021; accepted April 15, 2021; published online May 3, 2021

Abstract

C₂₇H₁₈CdN₆O₄, triclinic, P₁ (no. 2), a = 10.2994(8) Å, b = 10.7795(7) Å, c = 11.0038(7) Å, α = 89.778(5)°, β = 78.046(6)°, γ = 83.049(6)°, Z = 2, V = 1186.11(14) Å³, R_{gt}(F) = 0.0402, wR_{ref}(F²) = 0.0809, T = 293 K.

CCDC no.: 2044129

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All solvents and other reagents were of analytical grade. The method of synthesizing the title complex has been improved [8–12]. A mixture of cadmium nitrate, 2-(2-carboxyphenyl)-1H-benzo[d]imidazole-5-carboxylic acid, 1-(4-(1H-imidazol-1-yl)phenyl)-1H-imidazole, and water was introduced into a 25 mL Teflon reactor autoclave and heated to 145 °C for three days. After cooling down to room temperature, colorless block crystals were obtained. Elemental analysis - Anal. Calcd. for C₂₇H₁₈CdN₆O₄: C, 53.79%; H, 3.01%; N, 13.94%. Found: C, 53.80%; H, 3.02%; N, 13.96%.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

*Corresponding author: Xiu-Yan Dong, School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China, E-mail: dxy568@163.com

Qing-Lin Yang, Peng-Kun Fu, Ding-Qi Xiong, Xiao-Yu Zhang and Mei-Mei Jia, School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China

© 2021 Qing-Lin Yang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Comment

Coordination polymers (CPs) not only exhibit large specific surface area, high porosity, low density, and pore size adjustable but also possess a wide range of applications in the fields of catalysis, energy storage, and separation [13–19]. Benzimidazole carboxyl ligands, as rigid ligands, are relatively fixed during the coordination process, and the structure of their constructions are predictable. Secondly, the presence of nitrogen atoms enriches the diversity of the structure of complexes [20, 21].

In this work, we used 2-(2-carboxyphenyl)-1H-benzo[d]imidazole-5-carboxylic acid (H₂L) as a rigid ligand, assembling with Cd(NO₃)₂ and 1-(4-(1H-imidazol-1-yl)phenyl)-1H-imidazole to obtain a 2D framework. The crystal structure shows that the title complex consists of one Cd(II) atom, one L₂⁻ ligand, and one 1-(4-(1H-imidazol-1-yl)phenyl)-1H-imidazole auxiliary ligand.

The Cd(II) is seven-coordinated by two N atoms (N3 and N6) from two 1-(4-(1H-imidazol-1-yl)phenyl)-1H-imidazole auxiliary ligands and five O atoms (O1, O2, O3, and O4) from three different L²⁻ ligands. In the structure, the Cd(II) are bridged by L²⁻ ligands, forming a 1D chain. The chains are bridged by 1-(4-(1H-imidazol-1-yl)phenyl)-1H-imidazole auxiliary ligands, forming a 2D network structure.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Research Projects of Colleges and Universities in Gansu Province (No. 2019A-032); Tianjin University-Lanzhou Jiaotong University Independent Innovation Fund Cooperation Project (grant No. 2020060); Natural Science Foundation of Gansu Province (No. 20JR5RA425); Innovation and Entrepreneurship Training Program for College Students in Lanzhou Jiaotong University (No. 2020033).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References