Synthesis and crystal structure of di-tert-butyl 1″-acetyl-2,2″,9′-trioxo-4α,9α′-dihydro-1′H,3′H,9′H-dispiro[indoline-3,2′-xanthene-4′,3″-indoline]-1,3′-dicarboxylate, C₃₉H₃₈N₂O₉

Abstract

C₃₉H₃₈N₂O₉, monoclinic, P2₁/c (no. 14), a = 9.9846(6) Å, b = 31.4308(13) Å, c = 11.5739(6) Å, β = 110.712(7)°, V = 3397.4(3) Å³, Z = 4, ρcalc = 1.172 g cm⁻³, ρmax = 1.245 g cm⁻³, ρmin = 0.884 g cm⁻³, T = 293 K.

CCDC no.: 2086877

The molecular structure is shown in the figure (hydrogen atoms were omitted for clarity). Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The mixture of tert-butyl 2-oxo-3-(4-oxo-4H-chromen-3-yl) methylindoline-1-carboxylate (0.2 mmol), tert-butyl (E)-2-(1-acetyl-2-oxindolin-3-ylidene)acetate (0.3 mmol), 5 Å molecular sieves 125 mg, catalyst (3,5-bis(trifluoromethyl) phenyl)-3-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea (10 mol %) and 6.0 mL of freshly distilled Et₂O was maintained at room temperature for 84 h. Then concentration by evaporation under reduced pressure gave a crude product, which was purified by column chromatography on silica gel column using hexane/EtOAc (8/1, v/v) to give the corresponding pure products [3].

Experimental details

All hydrogen atoms were placed in geometrically idealized positions. The Uiso values of the hydrogen atoms of methyl
of 1,5 $U_{eq}(C)$ and the U_{iso} values of all other hydrogen atoms were set to 1.2$U_{eq}(C)$.

Comment

The spiroindolone system is the core structure of some natural alkaloids. Moreover, they have momentous medicinal properties including anticancer [4], antioxidant [5], antimicrobial [6], antifungal [7], anti HIV [8] and antitubercular activities [9]. Due to the aforesaid properties a variety of methods using diverse types of catalysts have been reported in the literature for the procurement of these types of compounds [10–13]. On the other hand, 4H-chromen-4-ones, a well-known class of oxygenated heterocyclic compounds, play an important role in nature due to their recognized biological, pharmacological and biocidal activities [14–16]. Due to the significance of hybrid systems in
drug discovery [17], there is an urgent need to assemble multiple pharmacophores into a single molecule. According to physiological activity structure combination strategy, spirooxindole skeleton and 4H-chromen-4-ones ring were joined together and the title compound was synthesized.

X-ray crystal structural analysis indicates that the molecular structure of the title structure consists of a 1,2,3,4,4a,9a-hexahydro-9H-xanthen-9-one ring, a 1-acetylindoline-2-one ring, a tert-butyl 2-oxoindoline-1-carboxylate ring and a tert-butylxoycarbonyl moiety (cf. the figure). The indoline-2-one rings are essentially planar, with a mean deviation from plane of 0.0168(3) Å for 1-acetylindoline-2-one ring and 0.0120(2) Å for tert-butyl 2-oxoindoline-1-carboxylate ring. Xanthen and indoline-2-one rings form spiro structural feature through atom C1 and C19. Because C1 and C19 are sp³ carbon atoms, the indoline-2-one rings are non-coplanar with the xanthen ring. Bond lengths and angles in the title molecule are all in the expected ranges [18, 19].

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This research was supported by Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 18JK0837), Natural Science Basic Research Plan Funded by Shaanxi Province of China (No. 2018M2045), Scientific Research Project Funded by Xianyang Normal University (No. XSYK18006), University Students Research and Innovation Training Program of Ministry of Education (S20201072009) and Qing–Lan Talents Project Funded by Xianyang Normal University (No. XSYQL201904).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References