BY 4.0 license Open Access Published by De Gruyter (O) July 23, 2021

Crystal structure of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine monohydrate, C56H42N8O

Yi-Da Li ORCID logo, Zhi-Qiang Song, Zhi-Wei Yue, Qi-Di Zhong ORCID logo and Ya-Juan Qi ORCID logo

Abstract

C56H42N8O, orthorhombic, Pbcn (no. 60), a = 17.885(3) Å, b = 15.647(2) Å, c = 16.189(2) Å, V = 4530.4(11) Å3, Z = 4, R gt (F) = 0.0464, wR ref (F2) = 0.1219, T = 296.15 K.

CCDC no.: 2088233

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.25 × 0.23 × 0.20 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint: 21952, 3990, 0.060
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2412
N(param)refined: 295
Programs: Bruker [1], SHELX [2], [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
O1 0.500000 0.8168 (2) 0.750000 0.1525 (14)
H1 0.463300 0.854729 0.755550 0.229*
N1 0.31777 (9) 0.63237 (12) 0.72911 (10) 0.0497 (5)
N2 0.57594 (13) 0.61697 (17) 0.61702 (13) 0.0874 (7)
N3 0.14055 (14) 0.42360 (13) 0.81103 (12) 0.0822 (7)
N4 0.11016 (13) 0.88598 (14) 0.70414 (13) 0.0797 (7)
C1 0.38213 (12) 0.61770 (13) 0.59373 (12) 0.0463 (5)
C2 0.31455 (13) 0.61616 (15) 0.55286 (13) 0.0623 (7)
H2 0.270440 0.622313 0.582687 0.075*
C3 0.31139 (15) 0.60558 (16) 0.46806 (14) 0.0709 (7)
H3 0.265235 0.604145 0.441638 0.085*
C4 0.37551 (16) 0.59722 (16) 0.42274 (14) 0.0668 (7)
H4 0.372900 0.589821 0.365809 0.080*
C5 0.44331 (14) 0.59976 (14) 0.46130 (13) 0.0583 (6)
H5 0.487033 0.594775 0.430572 0.070*
C6 0.44703 (12) 0.60979 (12) 0.54636 (12) 0.0453 (5)
C7 0.51869 (14) 0.61372 (15) 0.58609 (13) 0.0562 (6)
C8 0.38910 (12) 0.62579 (16) 0.68623 (13) 0.0607 (7)
H8A 0.415833 0.576412 0.707201 0.073*
H8B 0.418731 0.676060 0.698793 0.073*
C9 0.27723 (12) 0.56180 (14) 0.74632 (11) 0.0454 (5)
H9 0.295814 0.508998 0.729747 0.054*
C10 0.21147 (11) 0.56403 (12) 0.78613 (10) 0.0394 (5)
C11 0.17427 (11) 0.64614 (12) 0.81647 (11) 0.0375 (5)
C12 0.22774 (12) 0.71841 (13) 0.79783 (11) 0.0422 (5)
H12 0.214498 0.772827 0.815715 0.051*
C13 0.29155 (12) 0.71025 (14) 0.75825 (11) 0.0457 (5)
H13 0.320416 0.758829 0.749388 0.055*
C14 0.17361 (13) 0.48575 (14) 0.80034 (12) 0.0521 (6)
C15 0.09818 (11) 0.66033 (13) 0.77198 (11) 0.0432 (5)
H15A 0.064173 0.615032 0.788164 0.052*
H15B 0.076998 0.713945 0.790872 0.052*
C16 0.10285 (10) 0.66226 (13) 0.67900 (11) 0.0411 (5)
C17 0.11115 (11) 0.73801 (13) 0.63458 (12) 0.0449 (5)
C18 0.11678 (12) 0.73838 (16) 0.54851 (12) 0.0557 (6)
H18 0.123218 0.789690 0.520392 0.067*
C19 0.11282 (13) 0.66308 (17) 0.50559 (13) 0.0607 (7)
H19 0.116516 0.663037 0.448292 0.073*
C20 0.10338 (13) 0.58773 (16) 0.54764 (14) 0.0629 (7)
H20 0.100138 0.536547 0.518664 0.075*
C21 0.09866 (12) 0.58752 (14) 0.63254 (13) 0.0537 (6)
H21 0.092475 0.535676 0.659785 0.064*
C22 0.11166 (13) 0.81935 (16) 0.67503 (13) 0.0563 (6)
C23 0.16366 (11) 0.64138 (12) 0.91121 (11) 0.0398 (5)
C24 0.09794 (13) 0.66114 (14) 0.95156 (12) 0.0526 (6)
H24 0.056233 0.677137 0.920935 0.063*
C25 0.09299 (14) 0.65756 (15) 1.03701 (13) 0.0627 (7)
H25 0.048250 0.671418 1.063056 0.075*
C26 0.15338 (16) 0.63384 (14) 1.08298 (13) 0.0607 (7)
H26 0.149931 0.631342 1.140246 0.073*
C27 0.21919 (15) 0.61370 (15) 1.04429 (13) 0.0641 (7)
H27 0.260481 0.597430 1.075455 0.077*
C28 0.22456 (13) 0.61743 (14) 0.95908 (12) 0.0551 (6)
H28 0.269572 0.603716 0.933551 0.066*

Source of material

API was obtained according to literature method [4, 5]. Mix 0.33 g (1.1 mmol) of the API and 0.21 g (1.1 mmol) of 2-(bromomethyl)benzonitrile in a 30 ml quartz tube, add 25 ml of methanol, and place it under a 410 nm LED light at room temperature for 24 h, evaporate and concentrate. The mixed solution of methanol and dichloromethane was recrystallized to obtain a white solid. This solid was dissolved in methanol: distilled water (10:1), and the solvent was slowly volatilized. After four days, a transparent block crystal was obtained.

Experimental details

All hydrogen atoms were placed in the calculated positions.

Comment

1,4–Dihydropyridine (1,4–DHP) is one of the most important heterocyclic moieties that possesses prominent therapeutic effects in a very versatile manner [5]. Photochemical reactions have been widely used in various synthetic reactions [6], [7]. In particular, six-membered rings with symmetrical double bond structure are often used as educts for photoreactions. Earlier, 3–cyanopyridine, benzyl bromide or methyl bromide and phenylmagnesium bromide were used as educts to form 1-(2-cyanobenzyl)-3-cyano-4-phenyl-1,4-dihydropyridine [4]. This time, 2-(bromomethyl)benzonitrile and 1-(2-cyanobenzyl)-3-cyano-4-phenyl-1,4-dihydropyridine were used and different photoreaction solvents were used to obtain a new compound through light irradiation.

The asymmetric unit is composed of a molecule of 1-(2-cyanobenzyl)-3-cyano-4-phenyl-4-(2-cyanobenzyl)-1,4-dihydropyridine and a molecule of crystalline water.

In the molecules forming the title crystal structure all rings are significantly inclined to one another (see the Figure). The bond lengths and angles are in the expected ranges [8].


Corresponding author: Ya-Juan Qi, School of Basic Medical Sciences, North China University of Science and Technology, 063210, Caofeidian District, Tangshan, P. R. China, E-mail:

Funding source: Natural Science Foundation of Hebei Provincedoi.org/10.13039/501100005046

Award Identifier / Grant number: C2020209081

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by The Project Supported by Hebei Provincial Natural Science Foundation of China (C2020209081).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT. Version 8.23B; Bruker AXS Inc.: Madison, Wisconsin, USA, 2013. Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218. Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930. Search in Google Scholar

4. Li, N., Zhang, M., Du, Y., Zhong, Q. Synthesis of 3-cyano-4-phenyl-1,4- dihydropyridines. Chem. Reag. 2013, 42, 1014–1018. Search in Google Scholar

5. Zhang, M., Lan, H., Li, N., Zhong, Q., Zhu, H., Liu, C., Zhao, H. Photocatalyst-free singlet oxygen-induced oxygenation: a strategy for the preparation of 5-cyano-2-pyridones driven by blue-light irradiation. J. Org. Chem. 2020, 85, 8279–8286; https://doi.org/10.1021/acs.joc.0c00963. Search in Google Scholar

6. Abhinav, P. M., Ankit, B., Awani, K. R. 1,4–Dihydropyridine: a dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev. Med. Chem. 2019, 19, 1219–1254. Search in Google Scholar

7. Han, Y., Jin, Y., Jiang, M., Yang, H., Fu, H. Photocatalyst-free visible-light photoredox dearomatization of phenol derivatives containing ketoximes: an easy access to spiropyrrolines. Org. Lett. 2019, 21, 1799–1803; https://doi.org/10.1021/acs.orglett.9b00372. Search in Google Scholar

8. Mishiro, K., Kimura, T., Furuyama, T., Kunishima, M. Phototriggered active alkyne generation from cyclopropenones with visible light-responsive photocatalysts. Org. Lett. 2019, 21, 4101–4105; https://doi.org/10.1021/acs.orglett.9b01280. Search in Google Scholar

Received: 2021-06-09
Accepted: 2021-06-30
Published Online: 2021-07-23
Published in Print: 2021-09-27

© 2021 Yi-Da Li et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.