Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) September 22, 2021

Crystal structure of trans-tetraaqua-bis{2-carboxy-4-((5-carboxypyridin-3-yl)oxy)benzoato-κ1 N}cobalt(II) dihydrate C28H28O20N2Co

Xigang Du ORCID logo

Abstract

C28H28O20N2Co, triclinic, P 1 (no. 2), a = 7.7951(3) Å, b = 9.3511(4) Å, c = 11.3352(4) Å, β = 105.499(4)°, Z = 1, V = 762.19(6) Å3, R gt (F) = 0.0339, wR ref (F 2) = 0.0798, T = 293.0 K.

CCDC no.: 2091198

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Pink block
Size: 0.36 × 0.32 × 0.29 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.66 mm−1
Diffractometer, scan mode: SuperNova, ω
θ max, completeness: 25.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 10,420, 2842, 0.031
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 2567
N(param)refined: 244
Programs: CrysAlisPRO [1], SHELX [2, 3], Olex2 [4]

Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.3262 (3) 0.7465 (2) 0.63020 (19) 0.0254 (5)
H1 0.3471 0.8277 0.6889 0.031*
C2 0.2413 (3) 0.6054 (2) 0.65125 (18) 0.0220 (4)
C3 0.2094 (3) 0.4835 (2) 0.56603 (18) 0.0237 (4)
H3A 0.1517 0.3879 0.5787 0.028*
C4 0.2652 (3) 0.5068 (2) 0.46082 (18) 0.0217 (4)
C5 0.3488 (3) 0.6514 (2) 0.44464 (18) 0.0242 (5)
H5 0.3850 0.6665 0.3735 0.029*
C6 0.2345 (3) 0.3734 (2) 0.37034 (18) 0.0232 (4)
C7 0.2025 (3) 0.4783 (2) 0.82234 (17) 0.0218 (4)
C8 0.0676 (3) 0.4248 (2) 0.87936 (19) 0.0270 (5)
H8 −0.0342 0.4624 0.8681 0.032*
C9 0.0868 (3) 0.3141 (2) 0.9537 (2) 0.0273 (5)
H9 −0.0020 0.2793 0.9940 0.033*
C10 0.2347 (3) 0.2540 (2) 0.96931 (17) 0.0204 (4)
C11 0.2349 (3) 0.1250 (2) 1.04346 (18) 0.0216 (4)
C12 0.3685 (3) 0.3075 (2) 0.90871 (17) 0.0202 (4)
C13 0.3520 (3) 0.4218 (2) 0.83614 (18) 0.0225 (4)
H13 0.4419 0.4595 0.7973 0.027*
C14 0.5278 (3) 0.2461 (2) 0.91323 (18) 0.0242 (5)
Co1 0.5000 1.0000 0.5000 0.02458 (13)
N1 0.3795 (3) 0.77070 (19) 0.52806 (15) 0.0247 (4)
O1 0.2541 (2) 0.15340 (17) 1.15780 (13) 0.0334 (4)
O2 0.2086 (2) −0.00127 (16) 0.98920 (13) 0.0271 (3)
O3 0.5723 (2) 0.17569 (19) 1.00879 (14) 0.0333 (4)
H3 0.6406 0.1263 0.9971 0.050*
O4 0.6086 (2) 0.2603 (2) 0.83498 (15) 0.0403 (4)
O5 0.1661 (2) 0.24835 (16) 0.39192 (14) 0.0346 (4)
O6 0.2861 (2) 0.39998 (18) 0.27250 (14) 0.0324 (4)
H6 0.264 (5) 0.308 (4) 0.220 (3) 0.095 (13)*
O7 0.6730 (2) 1.04588 (18) 0.68233 (14) 0.0361 (4)
H7A 0.6677 0.9648 0.7132 0.054*
H7B 0.6300 1.0962 0.7261 0.054*
O8 0.3075 (3) 1.0771 (2) 0.56010 (16) 0.0384 (4)
H8A 0.2525 1.0465 0.6132 0.058*
H8B 0.2419 1.1271 0.5185 0.058*
O9 0.1820 (2) 0.59623 (16) 0.75530 (13) 0.0282 (4)
O10 0.1419 (3) 0.9888 (2) 0.73233 (16) 0.0518 (5)
H10A 0.0442 0.9166 0.7021 0.078*
H10B 0.1606 0.9937 0.8100 0.078*

Source of material

All chemicals were used without further purification. A mixture of CoCl2·6H2O (24.0 mg, 0.1 mmol), 4-(5-carboxy-pyridine-3-yloxy)-phthalic acid (30.3 mg, 0.1 mmol) and 6 mL distilled water in a 20 mL Teflon-lined autoclave was kept under autogenous pressure at 353 K for three days. After cooling to room temperature at a rate of 5 K h−1, pink crystals were collected by filtration and washed with distilled water.

Experimental details

Hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

Comment

Coordination polymers, built from metal ions and organic linkers, have developed rapidly as important functional materials for their intriguing architectures and unique physical/chemical characteristics in gas storage [5], catalysis [6], [7], [8], chemical sensing [9, 10], luminescence devices [11, 12], and so on. At present, a variety of polycarboxylic acid ligands have been employed to construct a series of coordination polymers. In this work, we report a compound based on central Co(II) ions and 4-(5-carboxy-pyridine-3-yloxy)-phthalic acid (H3L) ligand under hydrothermal conditions. From the point of view of structural chemistry, H3L is an efficient ligand, which contains three different types of functionalities (–COOH, N-pyridyl and O-ether) and has rich coordination modes. However, coordination polymers based on H3L are still rare [13], [14], [15], [16].

Single crystal X-ray structural analysis reveals that the asymmetric unit of consists of one half of a Co(II) ion, one H2L ligand, two coordinated water molecules and one lattice water molecule. The Co(II) ion exhibits a six-coordinated octahedral geometry, defined by four water O atoms (O7, O8, O7i and O8i) and two pyridyl N atoms (N1, and N1i). The distances of Co–O/N bond lengths (2.0693(16)–2.1872(17) Å) are in accordance with the normal ranges [1718], and the bond angles around Co atoms vary from 87.43(7)° to 180°. In the title complex, the carboxyl groups in H2L are partly deprotonated, in which H2L anions connect central Co(II) ion via pyridyl N atoms to form a discrete molecule structure. Moreover, there are hydrogen bonding interactions between lattice water molecules, coordinated water molecules and carboxyl oxygen atoms. These hydrogen bonding interactions contribute to the formation of a three-dimensional supramolecular architecture.


Corresponding author: Xigang Du, School of Chemical Engineering and Pharmaceutics, Henan University of Science, and Technology, Luoyang 471003, China, E-mail:

Funding source: Henan University of Science and Technology

Acknowledgements

This work was supported by the grants from Henan University of Science and Technology.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Henan University of Science and Technology.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Agilent Technologies. CrysAlisPRO Software System, Version 1.171.40.53; Agilent Technologies UK Ltd: Oxford, UK, 2019.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXTL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Jiang, X., Li, Z., Zhai, Y., Yan, G., Xia, H., Li, Z. Porous coordination polymers based on azamacrocyclic complex: syntheses, solvent induced reversible crystal-to-crystal transformation and gas sorption properties. CrystEngComm 2014, 16, 805–813; https://doi.org/10.1039/c3ce42021c.Search in Google Scholar

6. Li, Z.-H., Xue, L.-P., Qin, Q.-P., Zhang, J., Wang, J.-M., Zhang, X.-Y., Zhao, B.-T. A zinc(II) coordination polymer material with Lewis basic pyridyl sites: structure, photoluminescence, and heterogeneous catalysis. J. Solid State Chem. 2019, 274, 81–85; https://doi.org/10.1016/j.jssc.2019.03.020.Search in Google Scholar

7. Xue, L.-P., Li, Z.-H., Zhang, T., Cui, J.-J., Gao, Y., Yao, J.-X. Construction of two Zn(II)/Cd(II) multifunctional coordination polymers with mixed ligands for catalytic and sensing properties. New J. Chem. 2018, 42, 14203–14209; https://doi.org/10.1039/c8nj02055h.Search in Google Scholar

8. Cheng, J.-Y., Ding, F.-W., Wang, P., Zhao, C.-W., Dong, Y.-B. Synthesis, structure, and ligand-centered catalytic properties of MII coordination polymers (M = ZnII, CdII, HgII) with open pyridyl N-oxide sites. ChemPlusChem 2016, 81, 743–751; https://doi.org/10.1002/cplu.201600009.Search in Google Scholar

9. Li, Z.-H., Xue, L.-P., Mu, Y.-J., Zhao, B.-T. Viologen-derived material showing photochromic, visually oxygen responsive, and photomodulated luminescence behaviors. CrystEngComm 2021, 23, 1019–1024; https://doi.org/10.1039/d0ce01630f.Search in Google Scholar

10. Li, Z.-H., He, S.-J., Xue, L.-P., Wang, X.-N., Zhang, D.-D., Zhao, B.-T. Exploring methyl-3-hydroxy-5-carboxy-2-thiophenecarboxylate and varying flexible bis(imidazole)-based synthons as building blocks for the construction of diverse cadmium coordination polymers. Dyes Pigments 2018, 149, 498–504; https://doi.org/10.1016/j.dyepig.2017.10.036.Search in Google Scholar

11. Du, X.-G., Mi, G., Liu, J.-C., Zhang, J. A luminescent Zn(II) supramolecular coordination polymer constructed from 3,4-thiophenedicarboxylic acid and flexible benzimidazole-based connector. Chin. J. Struct. Chem. 2014, 33, 1597–1602.Search in Google Scholar

12. Du, X.-G., Mi, G., Liu, J.-C., Zhang, J. A two-dimensional Zn(II) coordination polymer with a three-dimensional supramolecular architecture comprising 5-dimethylamino-isophthalic acid and 1,3-bis(4-pyridyl)propane. Mol. Cryst. Liq. Cryst. 2016, 624, 44–50; https://doi.org/10.1080/15421406.2015.1044155.Search in Google Scholar

13. Sun, T., Wang, P., Fan, R., Chen, W., Hao, S., Yang, Y. Functional microscale single-phase white emission lanthanide MOF for tunable fluorescent sensing and water quality monitoring. J. Mater. Chem. C 2019, 7, 3598–3606; https://doi.org/10.1039/c8tc05968c.Search in Google Scholar

14. Wang, Y.-N., Wang, S.-D., Qi, H., Wang, W.-J., Hao, X.-X. Two new Zn2+/Cd2+ metal-organic frameworks (MOFs) constructed from asymmetrical tricarboxylic acid ligands. J. Mol. Struct. 2020, 1205, 127620; https://doi.org/10.1016/j.molstruc.2019.127620.Search in Google Scholar

15. Zhao, Q., Luo, B., Fan, H., Feng, Y., Liu, X., Deng, Y., Ma, X. Research on dual functional Eu crystalline materials with luminescence and gas storage. Mater. Lett. 2017, 197, 201–204; https://doi.org/10.1016/j.matlet.2017.02.134.Search in Google Scholar

16. Bai, N., Gao, R., Wang, H., Wu, Y., Hou, L., Wang, Y.-Y. Five transition metal coordination polymers driven by a semirigid trifunctional nicotinic acid ligand: selective adsorption and magnetic properties. CrystEngComm 2018, 20, 5726–5734; https://doi.org/10.1039/c8ce01003j.Search in Google Scholar

17. Li, Huixing, Han, Xinlong, and Cao, Bin Crystal structure of catena-poly[trans-tetraaqua(μ2-1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol)-κ2N:N′)cobalt(II)] dinitrate – 1,1′-(biphenyl-4,4′-diyl)bis(1H-imidazol) – water (1/3/2), C72H68CoN18O12. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 463–465; https://doi.org/10.1515/ncrs-2020-0572.Search in Google Scholar

18. Zhao, Jian-Ge. Crystal structure of tetraaqua-bis(3-(4H-1,2,4-triazol-4-yl)benzoato-κN)cobalt(II), C18H20CoN6O8. Z. Kristallogr. N. Cryst. Struct. 2017, 232, 581–583; https://doi.org/10.1515/ncrs-2016-0351.Search in Google Scholar

Received: 2021-06-23
Accepted: 2021-09-09
Published Online: 2021-09-22
Published in Print: 2021-12-20

© 2021 Xigang Du, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.