BY 4.0 license Open Access Pre-published online by De Gruyter (O) September 8, 2021

The crystal structure of [(phenantroline-κ2N,N′)-bis(6-phenylpyridine-2-carboxylate-κ2N,O)cobalt(II)]monohydrate, C36H26N4O5Co

Xi-Shi Tai ORCID logo, Zi-Jian Wang, Jian Ouyang, Yun-Fei Li, Wei Zhang, Wen-Lei Jia and Li-Hua Wang

Abstract

C36H26N4O5Co, triclinic, P212121 (no. 19), a = 10.6380(5) Å, b = 10.6639(5) Å, c = 26.5443(15) Å, V = 3011.2(3) Å3, Z = 4, Rgt(F) = 0.0330, wRref(F2) = 0.0681, T = 200 K.

CCDC no.: 2106191

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Yellow block
Size:0.14 × 0.13 × 0.12 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:0.62 mm−1
Diffractometer, scan mode:SuperNova, ω
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:12,912, 5250, 0.031
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 4822
N(param)refined:418
Programs:Bruker [1], Olex2 [2], SHELX [3], Diamond [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Co10.57858 (4)0.54695 (4)0.59310 (2)0.01996 (12)
O10.6157 (2)0.4671 (2)0.44444 (9)0.0305 (6)
O20.5654 (2)0.5574 (2)0.51714 (8)0.0266 (5)
O30.4737 (2)0.3917 (2)0.60417 (10)0.0268 (6)
O40.2873 (2)0.3191 (2)0.62805 (9)0.0313 (6)
N10.3837 (2)0.6291 (2)0.59868 (11)0.0195 (6)
N20.7090 (2)0.6989 (3)0.59906 (11)0.0222 (6)
N30.5865 (3)0.5849 (2)0.67342 (10)0.0217 (6)
N40.7272 (3)0.4141 (2)0.56874 (11)0.0217 (7)
C10.3044 (3)0.5364 (3)0.61220 (13)0.0231 (8)
C20.1799 (3)0.5557 (4)0.62450 (15)0.0365 (10)
H20.1286330.4891420.6340210.044*
C30.1338 (4)0.6760 (4)0.62227 (18)0.0475 (12)
H30.0502810.6923280.6303060.057*
C40.2121 (4)0.7714 (3)0.60812 (16)0.0373 (10)
H40.1816030.8529940.6062900.045*
C50.3369 (3)0.7470 (3)0.59646 (14)0.0229 (8)
C60.4202 (3)0.8521 (3)0.58087 (13)0.0238 (8)
C70.4930 (3)0.8449 (3)0.53774 (14)0.0282 (9)
H70.4945780.7710900.5191140.034*
C80.5634 (4)0.9471 (4)0.52216 (16)0.0393 (10)
H80.6117240.9416380.4930570.047*
C90.5620 (4)1.0565 (4)0.54959 (16)0.0396 (10)
H90.6096841.1248160.5391190.048*
C100.4899 (4)1.0648 (3)0.59264 (17)0.0401 (10)
H100.4896451.1384420.6113720.048*
C110.4183 (4)0.9642 (3)0.60795 (13)0.0316 (8)
H110.3682360.9711300.6365440.038*
C120.3578 (3)0.4041 (3)0.61506 (13)0.0231 (8)
C130.5277 (3)0.5264 (4)0.71042 (14)0.0302 (9)
H130.4824950.4543680.7026180.036*
C140.5294 (3)0.5662 (4)0.76058 (14)0.0352 (10)
H140.4848110.5225670.7850880.042*
C150.5976 (3)0.6706 (4)0.77306 (14)0.0331 (9)
H150.5999460.6988010.8062000.040*
C160.6641 (3)0.7345 (3)0.73525 (14)0.0270 (9)
C170.7445 (4)0.8397 (3)0.74473 (15)0.0338 (10)
H170.7510670.8708530.7773430.041*
C180.8108 (3)0.8945 (4)0.70741 (15)0.0320 (9)
H180.8634610.9615240.7148880.038*
C190.8014 (3)0.8510 (3)0.65627 (15)0.0265 (8)
C200.7220 (3)0.7487 (3)0.64583 (13)0.0205 (8)
C210.6546 (3)0.6887 (3)0.68606 (13)0.0214 (8)
C220.8702 (3)0.9010 (4)0.61628 (16)0.0311 (9)
H220.9239420.9685180.6216630.037*
C230.8586 (4)0.8507 (4)0.56934 (16)0.0328 (10)
H230.9042770.8831520.5424640.039*
C240.7763 (3)0.7489 (3)0.56216 (15)0.0292 (9)
H240.7688850.7150720.5300050.035*
C250.8039 (3)0.3386 (3)0.59500 (15)0.0252 (8)
C260.8748 (4)0.2457 (4)0.57166 (16)0.0349 (10)
H260.9277760.1949800.5906520.042*
C270.8662 (4)0.2290 (4)0.52032 (16)0.0372 (10)
H270.9136200.1675330.5043110.045*
C280.7861 (3)0.3048 (3)0.49298 (15)0.0300 (9)
H280.7774940.2945900.4583600.036*
C290.7192 (3)0.3961 (3)0.51823 (13)0.0214 (8)
C300.6278 (3)0.4794 (3)0.49053 (13)0.0217 (8)
C310.8131 (3)0.3566 (4)0.65080 (15)0.0296 (9)
C320.8626 (3)0.4642 (4)0.67090 (15)0.0334 (9)
H320.8888440.5281650.6495040.040*
C330.8742 (4)0.4795 (4)0.72253 (17)0.0456 (12)
H330.9092140.5524880.7355820.055*
C340.8340 (5)0.3864 (5)0.75426 (18)0.0565 (13)
H340.8406360.3968280.7889470.068*
C350.7834 (5)0.2769 (5)0.73479 (18)0.0630 (15)
H350.7564590.2135210.7563070.076*
C360.7733 (5)0.2622 (4)0.68298 (17)0.0497 (12)
H360.7396690.1887440.6697920.060*
O50.6169 (3)0.3863 (3)0.34543 (10)0.0469 (8)
H5A0.6478350.3131110.3428630.070*
H5B0.6253750.4122720.3755350.070*

Source of material

The title compound was synthesized as follows: dissolving 0.0996 g (0.5 mmol) 6-phenylpyridine-2-carboxylic acid, 0.020 g (0.5 mmol) NaOH and 0.1245 g (0.5 mmol) Co(CH3COO)2·1H2O mixture into 20 ml of water-95% ethanol (v:v = 1:2) at room temperature. A small amount of blue precipitation was immediately present in the solution. The mixture was stirred for 0.5 h at 75 °C, and 0.090 g (0.5 mmol) 1,10-phenanthroline was added to the reaction mixture. The reaction mixture was stirred for 5 h. The solution was cooled to room temperature and filtered. The yellow crystals of the title compound were received from the filtrate in four weeks.

Experimental details

The hydrogen atoms were positioned geometrically (C–H = 0.93 Å and O–H = 0.85 Å). Their Uiso values were set to 1.2 or 1.5Ueq of the parent atoms.

Comment

Cobalt(II) complexes exhibit potential application properties in electrochemical property, catalytic activity, reversible magnetogenic property and antifungal activity [5], [6], [7], [8], [9]. 1,10-Phenanthroline was also an important nitrogen heterocycle ligand, and it also played an important role in enriching the structure and properties of the metal complexes [10]. Our research group has been on the synthesis and properties of metal complexes [1112]. In order to synthesize and characterize more metal complexes, a new Co(II) complex has been synthesized and structural characterized.

The asymmetric unit of the tile crystal structure consists of one Co(II) ion, two bidentate 6-phenylpyridine-2-carboxylate ligands, one 1,10-phenanthroline ligand, and one uncoordinated water molecule. The Co(II) ion is coordinated by two O atoms (O2 and O3), two N atoms (N1 and N4) from two 6-phenylpyridine-2-carboxylate ligands and two N atoms (N2 and N3) from one 1,10-phenanthroline ligand. The Co(II) atom forms a six-coordinated distorted octahedral coordination environment. The N1, N2, N4 and O3 atoms are at the equatorial plane and the N3 and O2 atoms are in the axial position (N3–Co1–O2, 166.01(9)°). The lengths of Co–N bonds and Co–O bonds are 2.256(3) Å (Co1–N1), 2.139(3) Å (Co1–N2), 2.172(3) Å (Co1–N3), 2.219(3) (Co1–N4), 2.024(2) (Co1–O2), 2.018(2) (Co1–O3), respectively. All geometric parameters are in the expected ranges [13].


Corresponding author: Xi-Shi Tai, College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong261061, P. R. China, E-mail:

Funding source: National Natural Science Foundation of Chinahttp://dx.doi.org/10.13039/501100001809

Award Identifier / Grant number: 21171132

Funding source: Natural Science Foundation of Shandonghttp://dx.doi.org/10.13039/501100007129

Award Identifier / Grant number: ZR2014BL003

Funding source: Project of Shandong Province Higher Educational Science and Technology Programhttp://dx.doi.org/10.13039/501100015642

Award Identifier / Grant number: J14LC01

Funding source: Science Foundation of Weifang

Award Identifier / Grant number: 2020ZJ1054

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This project was supported by the National Natural Science Foundation of China (No. 21171132, http://doi.org/10.13039/501100001809), the Natural Science Foundation of Shandong (ZR2014BL003, http://doi.org/10.13039/501100007129), the Project of Shandong Province Higher Educational Science and Technology Program (J14LC01, http://doi.org/10.13039/501100015642) and Science Foundation of Weifang (2020ZJ1054).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2000. Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726. Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8https://doi.org/10.1107/S2053229614024218. Search in Google Scholar

4. Brandenburg, K. Diamond. Visual Crystal Structure Information System. (Ver. 3.2); Crystal Impact: Bonn, Germany, 2012. Search in Google Scholar

5. Li, T.-Y., Xu, X.-D., Huang, M.-F., Wang, M., Wu, Q. Crystal structure of tris(azido-k1N)-(N-(2-aminoethyl)-N-methyl-1,3-propanediamine-k3N,N′,N″)cobalt(III), C7H19CoN12. Z. Kristallogr. NCS 2021, 236, 357–358; https://doi.org/10.1515/ncrs-2020-0544. Search in Google Scholar

6. Balaraman, L., Emhoff, K.-A., Salem, A.-M.-H., Hanna, J., Alsabony, M.-N., Bayachou, M., Mundell, J.-J., Boyd, W.-C. Electrochemical studies of cobalt(II) diphenylazodioxide complexes. Inorg. Chim. Acta. 2020, 501, 119277; https://doi.org/10.1016/j.ica.2019.119277. Search in Google Scholar

7. Gualandi, A., Rodeghiero, G., Perciaccante, R., Jansen, T.-P., Moreno-Cabrerizo, C., Foucher, C., Marchini, M., Ceroni, P., Cozzi, P.-G. Catalytic photoredox allylation of aldehydes promoted by a cobalt complex. Adv. Synth. Catal. 2020, 363, 1105–1111; https://doi.org/10.1002/adsc.202001250. Search in Google Scholar

8. Bonnitcha, P., Broadhouse, K., Grieve, S., Kolanowski, J., New, E., ONeill, E., Renfrew, A., Yin, G. Reversible magnetogenic cobalt complexes. RSC Adv. 2016, 6, 30021–30027. Search in Google Scholar

9. Frei, A., King, A.-P., Lowe, G.-J., Cain, A.-K., Short, F.-L., Dinh, H., Elliott, A.-G., Zuegg, J., Wilson, J.-J., Blaskovich, M.-A.-T. Nontoxic cobalt(III) Schiff base complexes with broad-spectrum antifungal activity. Chem. Eur J. 2021, 27, 2021–2029; https://doi.org/10.1002/chem.202003545. Search in Google Scholar

10. Wang, L.-H., Liu, L.-L., Cao, S.-H., Tai, X.-S. Crystal structure of poly[(m3-3-carboxyadamantane-1-carboxylato-κ3O:O′:O″)-(phenanthroline-κ2 N,N′)sodium(II)], C24H23N2NaO4. Z. Kristallogr. NCS 2021, 236, 745–747. Search in Google Scholar

11. Du, L.-C., Tai, X.-S. The crystal structure of catena-poly[diaqua-bis(μ2-2-((2-(2-phenylacetyl)hydrazineylidene) methyl)benzoato-κ2O:O′)zinc(II)], C32H30N4O8Zn. Z. Kristallogr. NCS 2021, 236, 843–844; https://doi.org/10.1515/ncrs-2021-0110. Search in Google Scholar

12. Wang, L.-H., Kong, F.-Y., Tai, X.-S. Crystal structure and catalytic activity of poly[bis(3-bromo-2-hydroxybenzaldehyde)-2-aminopyrimidinemagnesium(II)] for hydrogenation of 1,3-butadiene. Bull. Chem. React. Eng. Catal. 2021, 16, 260–266; https://doi.org/10.9767/bcrec.16.2.10421.260-266. Search in Google Scholar

13. Smith, P. W., Moore, C. E., Rheingold, A. L., Figueroa, J. S. Coordination and structural properties of encumbering 6-mesityl-2-picolinate complexes. Dalton Trans. 2012, 41, 8031–8038; https://doi.org/10.1039/c2dt30585b. Search in Google Scholar

Received: 2021-08-06
Published Online: 2021-09-08

© 2021 Xi-Shi Tai et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.