Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) October 14, 2021

The crystal structure of 3-bromopicolinic acid, C6H4BrNO2

  • Guang Huang ORCID logo EMAIL logo

Abstract

C6H4BrNO2, orthorhombic, Pna21 (no. 33), a = 14.3975(12) Å, b = 7.5773(7) Å, c = 12.2500(10) Å, β = 90°, V = 1336.4(2) Å3, Z = 8, R gt (F) = 0.0281, wR ref (F 2) = 0.0536, T = 150(2) K.

CCDC no.: 2113913

The asymmetric unit of the title crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.25 × 0.15 × 0.10 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 6.08 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 26.4°, >99%
N(hkl)measured, N(hkl)unique, R int: 15,847, 2696, 0.054
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2341
N(param)refined: 183
Programs: Bruker [1], Olex2 [2], SHELX [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br1 0.22803 (4) 0.52861 (7) 0.81495 (6) 0.03716 (14)
Br2 0.46236 (4) 0.82636 (10) 0.14898 (5) 0.04430 (17)
C1 0.3262 (4) 0.5618 (8) 0.5733 (5) 0.0336 (14)
C2 0.3808 (4) 0.6122 (8) 0.6736 (5) 0.0307 (14)
C3 0.3489 (4) 0.6082 (8) 0.7803 (5) 0.0317 (13)
C4 0.4073 (4) 0.6555 (8) 0.8646 (5) 0.0349 (14)
H4 0.385729 0.653693 0.937917 0.042*
C5 0.4973 (4) 0.7054 (8) 0.8414 (5) 0.0364 (15)
H5 0.539178 0.737623 0.897911 0.044*
C6 0.5243 (4) 0.7069 (8) 0.7339 (5) 0.0357 (15)
H6 0.585833 0.743315 0.717250 0.043*
C7 0.5299 (4) 0.8165 (8) 0.4021 (5) 0.0333 (13)
C8 0.6007 (3) 0.8671 (7) 0.3169 (5) 0.0308 (11)
C9 0.5811 (4) 0.8806 (8) 0.2070 (5) 0.0328 (14)
C10 0.6498 (4) 0.9304 (8) 0.1339 (5) 0.0372 (14)
H10 0.637243 0.939454 0.057940 0.045*
C11 0.7372 (4) 0.9665 (8) 0.1751 (5) 0.0375 (14)
H11 0.786326 1.000954 0.127834 0.045*
C12 0.7519 (4) 0.9514 (8) 0.2861 (5) 0.0384 (16)
H12 0.811946 0.977176 0.313956 0.046*
N1 0.4685 (3) 0.6596 (6) 0.6511 (6) 0.0326 (9)
N2 0.6860 (3) 0.9025 (7) 0.3558 (4) 0.0325(11)
O1 0.2493 (3) 0.6525 (6) 0.5614 (4) 0.0396 (10)
H1 0.226034 0.630712 0.500027 0.059*
O2 0.3556 (3) 0.4546 (6) 0.5101 (4) 0.0491 (12)
O3 0.5656 (3) 0.7083 (6) 0.4753 (3) 0.0361 (10)
H3 0.525885 0.687403 0.523783 0.054*
O4 0.4513 (3) 0.8729 (6) 0.4024 (4) 0.0449 (11)

Source of material

All starting materials were used as received. For the recrystallization 2.01 g (10 mmol) 3-bromopicolinic acid was mixed with 10 mL tetrahydrofuran and 1 mL deionized water under room temperature and was stirred to form a clear solution. The solution was filtered and evaporated naturally. Several days later, colorless block crystals of the title compound were obtained, yield 82% (based on the raw 3-bromopicolinic acid).

Experimental details

The structure was solved by direct methods with the SHELXS-2018 program. All H-atoms from C and N atoms were positioned with idealized geometry and refined isotropic (U iso (H) = 1.2U eq (C)) using a riding model with C–H = 0.95 Å. The H-atoms from O atoms positioned using peaks from the difference Fourier map and refined isotropic with the distance of O1–H1 = 0.84 Å and O3–H3 = 0.84 Å (U iso (H) = 1.5U eq (O)). The distance of Br1 and O4 is 3.034 Å, which indicates a short inter HL⃛A contact between Br1 and O4, resulting an Alert level B for checkcif. But there is no reasonable hydrogen bond. There may be some intermolecular weak interaction between Br1 and O4.

Comment

Among the mono-bromide-substituted picolinic acids, including 4-, 5- and 6-bromide-substituted picolinic acids and their derivatives, only the crystal structures of 4-bromopico-linic acid and methyl 5-bromo-6-methylpicolinate have been reported [5, 6]. Some of their metal complexes [7], [8], [9], [10], [11], [12], [13], [14], [15] and organometal complexes [16], [17], [18], [19], [20], [21], [22] have been also reported elsewhere. To the best of our knowledge, the crystal structures of 3-bromide-substituted picolinic acid has not been reported. Herein we reported the crystal structure of 3-bromopicolinic acid.

The asymmetric unit is made of two 3-bromopicolinic acid molecules, which show a slightly different conformation about the C1–C2 and C7–C8 bond, respectively. All bond lengths of the title compound are comparable with the reported results [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. There is one dimensional chain generated by hydrogen bonds O1–H1⃛N2 and O3–H3⃛N1.


Corresponding author: Guang Huang, Sino-Portugal Belt and Road Joint Laboratory on Science of Cultural Heritage Conservation, City University of Macau, Macau, P. R. China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, P. R. China, E-mail:

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Bruker. SAINT (v8.37A); Bruker AXS Inc: Madison, Wisconsin, USA, 2015.Search in Google Scholar

2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Crystallogr. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. Using phases to determine the space group. Acta Crystallogr. 2018, A74, a353; https://doi.org/10.1107/s0108767318096472.Search in Google Scholar

5. Cai, B., Zhu, M.-E., Bai, X., Lin, Y.-R., Guo, Q.-Q., Mneg, Y.-N. The crystal structure of 5-bromopicolinic acid monohydrate, C6H6BrNO3. Z. Kristallogr. NCS 2020, 235, 399–400; https://doi.org/10.1515/ncrs-2020-0087.Search in Google Scholar

6. Wu, Y.-M., Wu, C.-M., Wang, Y. Methyl 5-bromo-6-methylpicolinate. Acta Crystallogr. 2009, E65, o134; https://doi.org/10.1107/s1600536808042104.Search in Google Scholar PubMed PubMed Central

7. Li, J.-X., Du, Z.-X., Bai, R.-F. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato- κ2N,O) zinc(II) dihydrate, C14H16Br2N2O7Zn. Z. Kristallogr. NCS 2020, 235, 63–65; https://doi.org/10.1515/ncrs-2020-0343.Search in Google Scholar

8. Chai, J., Liu, Y., Liu, B., Yang, B. Effect of substituent groups (R = CH3, Br and CF3) on the structure, stability and redox property of [Cr(R-pic)2(H2O)2]NO3·H2O complexes. J. Mol. Struct. 2017, 1150, 307–315; https://doi.org/10.1016/j.molstruc.2017.08.099.Search in Google Scholar

9. Chai, J., Liu, Y., Dong, J., Liu, B., Yang, B. Synthesis, structure, chemical and bioactivity behavior of eight chromium(III) picolinate derivatives Cr(R-pic)3. Inorg. Chim. Acta. 2017, 466, 151–159; https://doi.org/10.1016/j.ica.2017.05.041.Search in Google Scholar

10. Baroud, A. A., Mihajlovic-Lalic, L. E., Gligorijevic, N., Arandelovic, S., Stankovic, D., Radulovic, S., Van Hecke, K., Grguric-Sipka, S. Ruthenium(II) bipyridine complexes: from synthesis and crystal structures to electrochemical and cytotoxicity investigation. J. Coord. Chem. 2017, 70, 831–847; https://doi.org/10.1080/00958972.2017.1282611.Search in Google Scholar

11. Kukovec, B.-M., Popovic, Z. Pseudopolymorphism in nickel(II) complexes with 6-bromopicolinic acid. synthesis, structural and thermal studies. J. Mol. Struct. 2009, 930, 121–125; https://doi.org/10.1016/j.molstruc.2009.05.002.Search in Google Scholar

12. Rachford, A. A., Jeffrey, L., Petersen, J. L., Rack, J. J. Efficient energy conversion in photochromic ruthenium DMSO complexes. Inorg. Chem. 2006, 45, 5953–5960; https://doi.org/10.1021/ic0603398.Search in Google Scholar PubMed

13. Hu, F.-L., Yue, Z., Yan, M., Luo, W.-Q., Yin, X.-H. Aquabis-(6-bromo-picolinato-κ2N,O)copper(II). Acta Crystallogr. 2009, E65, m45–m46; https://doi.org/10.1107/s1600536808041536.Search in Google Scholar PubMed PubMed Central

14. Kukovec, B.-M., Popovic, Z. Polymorphism of cobalt(II) complex with 6-bromopicolinic acid: the influence of the solution pH value on the formation of polymorphs. J. Mol. Struct. 2009, 930, 174–178; https://doi.org/10.1016/j.molstruc.2009.09.022.Search in Google Scholar

15. Kukovec, B.-M., Popovic, Z., Kozlevcar, B., Jaglicic, Z. 3D supramolecular architectures of copper(II) complexes with 6-methylpicolinic and 6-bromopicolinic acid: synthesis, spectroscopic, thermal and magnetic properties. Polyhedron 2008, 27, 3631–3638; https://doi.org/10.1016/j.poly.2008.09.011.Search in Google Scholar

16. Poljarevic, J. M., Gal, G. T., May, N. V., Spengler, V., Domotor, O., Savic, A. R., Grguric-Sipka, S., Enyedy, E. A. Comparative solution equilibrium and structural studies of half-sandwich ruthenium(II) (η6-toluene) complexes of picolinate derivatives. J. Inorg. Biochem. 2018, 181, 74–85.10.1016/j.jinorgbio.2017.12.017Search in Google Scholar PubMed

17. Davidson, R., Hsu, Y.-T., Bhagani Yufit, D., Beeby, A. Exploring the chemistry and photophysics of substituted picolinates positional isomers in iridium(III) bisphenylpyridine complexes. Organometallics 2017, 36, 2727–2735; https://doi.org/10.1021/acs.organomet.7b00179.Search in Google Scholar

18. Quan, L., Yin, H., Wang, D. Bis(5-bromopyridine-2-carboxylato-O) triphenyl-antimony(V). Acta Crystallogr. 2008, E64, m1503; https://doi.org/10.1107/s1600536808033783.Search in Google Scholar

19. Silva, J. A., Magalhaes, A. P., Silva, M. R., Sobral, A. J. F. N., Pereira, L. C. J. Diaqua-(6-bromopicolinato-κ2N,O) (nitrato-κ2O,O) copper(II). Acta Crystallogr. 2011, E67, m160; https://doi.org/10.1107/s160053681100064x.Search in Google Scholar PubMed PubMed Central

20. Ivanovic, I., Jovanovic, K. K., Gligorijevic, N., Radulovic, S., Arion, V. B., Sheweshein, K. S. A. M., Tesic, Z. L., Grguric-Sipka, S. Ruthenium(II)-arene complexes with substituted picolinato ligands: synthesis, structure, spectroscopic properties and antiproliferative activity. J. Organomet. Chem. 2014, 749, 343–349.10.1016/j.jorganchem.2013.10.023Search in Google Scholar

21. Hong, M., Yin, D.-H., Zhang, Y.-W., Jiang, J., Li, C. Coordination geometry of monomeric, dimeric and polymeric organotin(IV) compounds constructed from 5-bromopyridine-2-carboxylic acid and mono-, di- or tri-organotin precursors. J. Mol. Struct. 2009, 1036, 244–251.10.1016/j.molstruc.2012.11.052Search in Google Scholar

22. Van Rijt, S. H., Anna, F. A., Peacock, A. F. A., Russell, D. L., Johnstone, R. D. L., Simon Parsons, S., Sadler, P. J. Organometallic osmium(II) arene anticancer complexes containing picolinate derivatives. Inorg. Chem. 2009, 48, 1753–1762; https://doi.org/10.1021/ic8020222.Search in Google Scholar PubMed

Received: 2021-08-28
Accepted: 2021-10-05
Published Online: 2021-10-14
Published in Print: 2021-12-20

© 2021 Guang Huang, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 7.6.2023 from https://www.degruyter.com/document/doi/10.1515/ncrs-2021-0343/html
Scroll to top button