Yunqian Feng, Jianghai Ye, Peng Wang, Shuqiong Tai and Tianqiong Lang*

The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl-1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C_{18}H_{18}N_{3}O_{4}S

https://doi.org/10.1515/ncrs-2021-0451
Received November 24, 2021; accepted January 18, 2022; published online January 31, 2022

Abstract
C_{18}H_{18}N_{3}O_{4}S, monoclinic, Cc (no. 9), a = 10.8839(14) Å, b = 14.2825(18) Å, c = 13.0717(16) Å, β = 108.618(3), V = 1925.6(4) Å³, Z = 4, R_{wp}(F) = 0.0359, wR_{wp}(F^2) = 0.0812, Flack parameter = 0.009(6), T = 298(2) K.

CCDC no.: 2115704

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material
The title compound was obtained according to the following procedure: to a round-bottom flask (25 mL) was added thiosemicarbazone of dehydroacetic acid (0.5 mmol), 2,4′-dibromoacetophenone (0.5 mmol) and anhydrous EtOH (5 mL). The mixture was then stirred at 80 °C for 20 h, until the starting material was completely consumed monitored by TLC. The solvent was removed under reduced pressure to obtain a residue, which was redissolved in hot methanol for recrystallization. The title compound was obtained as pale brown needles in low yield (22%). The structure was further confirmed by spectroscopical analysis.

Experimental details
A Bruker APEX–II CCD diffractometer was employed to perform the diffraction experiment of a single crystal selected carefully. The data was collected using APEX 2 [1] data collection software at 298 K. The structure was solved and refined using the Bruker SHELXTL Software Package [2, 3].

Comment
The pyrazolone structural motif has been a critical pharmacophore in novel drug discovery, which exhibit various biological effects including antimicrobial, anti-tumor,
There is one crystallographically independent target molecule and one additional methanol molecule in the asymmetric unit. The geometric parameters in the crystal structure of the title compound are all in normal ranges. In addition to the basic pyrazolone skeleton, the title compound contains a β-diketone moiety, and a 4-(4-bromophenyl)thiazol-2-yl group. After careful analysis of the crystallographic data, the β-diketone moiety was identified to be present in its enol form, while NMR analysis indicated the presence of ketone/enol (4:5) mixed forms in deuterated DMSO. The observed phenomenon was in accordance with the literature [9, 10]. Based on the following characteristic bond length: d(O1–C12) = 1.235(5) Å, d(C11–C12) = 1.437(6) Å, d(C10–C11) = 1.410(6) Å, d(N3–C10) = 1.332(5) Å, d(N2–N3) = 1.371(5) Å, d(N2–C12) = 1.392(6) Å, the pyrazolone motif was then identified to be present in its NH tautomer, rather than in CH or OH tautomer in the literature [10]. The thiazol-2-yl group at N-2 seems to exhibit effects on the tautomeric forms of the pyrazolone, which deserves further studies in detail.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: This work was financially supported by the Department of Science and Technology of Guizhou Province for Basic Research (QKHCJ[C2016] 1017), the Starup Fund of Guizhou University of Traditional Chinese Medicineth (GYZBSQD[2015], 1000 Talent Plan (Qian Cengkap) of Guizhou Province (GZY[QZQ2018002]), and Undergraduate Innovation and Entrepreneurship Project of Guizhou University of Traditional Chinese Medicine (GYZDYHZ[2021]).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker APEX2 Ver 2.0–1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2005.


