Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) May 20, 2022

Crystal structure of poly[(μ2-1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene-κ2N:N′)-(μ3-pyridazine-4,5-dicarboxylate-κ3O:O′:N)]copper(II) hydrate, C19H16CuN6O5

Guang-Zhen Liu ORCID logo, Xiu-Jin Wang and Wen-Hui Wei

Abstract

C19H16CuN6O5, triclinic, P 1 (no. 2), a = 9.0143(3) Å, b = 9.2122(3) Å, c = 11.8205(4) Å, α = 82.900(3)°, β = 74.593(3)°, γ = 83.612(3), V = 935.90(5) Å3, Z = 2, R gt (F) = 0.0284, wR ref (F2) = 0.0684, T = 293 K.

CCDC no.: 2170709

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Blue block
Size: 0.35 × 0.29 × 0.22 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 1.22 mm−1
Diffractometer, scan mode: SuperNova, ω-scans
θmax, completeness: 26°, >99%
N(hkl)measured, N(hkl)unique, Rint: 13,542, 3663, 0.023
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 3462
N(param)refined: 280
Programs: OLEX2 [1], SHELX [2, 3], CrysAlisPRO [4]

Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z Uiso*/Ueq
Cu1 0.79348 (3) 1.00882 (3) 0.28659 (2) 0.02048 (8)
O1 0.56355 (15) 1.01692 (16) 0.30344 (12) 0.0249 (3)
O2 0.59351 (17) 0.91484 (19) 0.13580 (13) 0.0349 (4)
O3 0.3917 (2) 0.73446 (19) 0.43801 (15) 0.0404 (4)
O4 0.2168 (2) 0.8764 (2) 0.55538 (13) 0.0396 (4)
N1 0.77637 (19) 0.81486 (19) 0.37953 (15) 0.0253 (4)
N2 0.6745 (2) 0.6574 (2) 0.52779 (15) 0.0271 (4)
N3 0.7616 (2) 0.35833 (19) 1.03905 (15) 0.0248 (4)
N4 0.80148 (18) 0.19302 (19) 1.18051 (14) 0.0228 (4)
N5 0.02946 (18) 0.99068 (19) 0.26511 (14) 0.0212 (4)
N6 0.12523 (19) 1.0411 (2) 0.16322 (14) 0.0245 (4)
C1 0.5151 (2) 0.9645 (2) 0.22764 (17) 0.0219 (4)
C2 0.3416 (2) 0.9699 (2) 0.24836 (16) 0.0191 (4)
C3 0.2746 (2) 1.0307 (2) 0.15706 (17) 0.0230 (4)
H3 0.3403 1.0665 0.0867 0.028*
C4 0.0857 (2) 0.9329 (2) 0.35528 (16) 0.0210 (4)
H4 0.0162 0.9008 0.4249 0.025*
C5 0.2422 (2) 0.9173 (2) 0.35219 (16) 0.0178 (4)
C6 0.2911 (2) 0.8354 (2) 0.45839 (17) 0.0204 (4)
C7 0.8479 (3) 0.6776 (3) 0.3593 (2) 0.0387 (6)
H7 0.9268 0.6554 0.2935 0.046*
C8 0.7855 (3) 0.5796 (3) 0.4502 (2) 0.0426 (6)
H8 0.8129 0.4792 0.4582 0.051*
C9 0.6727 (2) 0.7974 (2) 0.48160 (18) 0.0259 (4)
H9 0.6066 0.8731 0.5170 0.031*
C10 0.5585 (3) 0.6001 (3) 0.63072 (19) 0.0309 (5)
H10A 0.5090 0.5244 0.6076 0.037*
H10B 0.4799 0.6787 0.6557 0.037*
C11 0.6216 (2) 0.5368 (2) 0.73426 (18) 0.0261 (4)
C12 0.7319 (3) 0.6004 (3) 0.7691 (2) 0.0373 (6)
H12 0.7748 0.6832 0.7248 0.045*
C13 0.7800 (3) 0.5425 (3) 0.8692 (2) 0.0359 (6)
H13 0.8550 0.5857 0.8915 0.043*
C14 0.7151 (2) 0.4202 (2) 0.93494 (17) 0.0254 (4)
C15 0.6035 (3) 0.3560 (2) 0.90218 (19) 0.0290 (5)
H15 0.5586 0.2748 0.9476 0.035*
C16 0.5590 (3) 0.4135 (2) 0.80126 (18) 0.0288 (5)
H16 0.4859 0.3687 0.7781 0.035*
C17 0.8149 (3) 0.4303 (3) 1.11279 (19) 0.0307 (5)
H17 0.8312 0.5294 1.1050 0.037*
C18 0.8391 (3) 0.3266 (2) 1.20017 (19) 0.0303 (5)
H18 0.8756 0.3436 1.2635 0.036*
C19 0.7556 (2) 0.2164 (2) 1.08286 (17) 0.0246 (4)
H19 0.7231 0.1443 1.0484 0.030*
O1W 0.8977 (2) 0.7951 (3) 0.07393 (18) 0.0650 (6)
H1WA 0.8994 0.8369 0.0054 0.098*
H1WB 0.8035 0.8259 0.0989 0.098*

Source of material

The mixture of pyridazine-4,5-dicarboxylic acid (H2pda, 0.1 mmol, 16 mg), 1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene (iimb, 0.05 mmol, 11 mg), Cu(OAc)2·H2O (0.2 mmol, 40 mg), H2O (6.0 ml) was placed in a 23 ml Teflon lined stainless steel reactor. This reactor was placed in an oven and heated to 413 K under autogenous pressure for 96 h. Then the oven was cooled naturally to room temperature. Blue block crystals of the titled compound were obtained.

Experimental details

A suitable crystal of the titled compound was selected elaborately and mounted on a SuperNova diffractometer. The crystal was kept at 293 K during data collection. Using Olex2 [1], the structure was solved with the ShelXT structure solution program and refined with the ShelXL refinement package [2, 3]. All non-hydrogen atoms were refined anisotropically, while all hydrogen atoms were modeled at their calculated positions and included in the refinement via the riding model. The U iso of the H-atoms were constrained to 1.2 times U eq of their bonding carbon atoms and 1.5 times U eq of their bonding oxygen atoms for the hydrogen atoms in water molecules.

Discussion

A considerable number of coordination polymers based on divalent metal ions and well-chosen organic ligands have been synthesized by solvothermal methods, with charming architectures, tailored properties [5], [6], [7], [8]. The organic ligands can be aromatic carboxylates, aliphatic carboxylates, N-heterocyclic carboxylates or other species [9], [10]. Especially, N-heterocyclic carboxylates (pyridine carboxylates, imidazole carboxylates, pyrazine carboxylates and so on) possess inherently two different functional groups, namely carboxyl group and N-heterocyclic ring [11], [12], [13], [14]. On the one hand, the oxygen atoms of carboxyl groups can ligate to different metal ions, honored with strong coordination abilities and versatile coordination modes. On the other hand, the nitrogen atoms in the heterocyclic rings can also bind to metal ions because they maybe have lone electron pairs for donation. Thereby, N-heterocyclic carboxylates enable to be one kind of reliable building units to construct coordination polymers. Up to now, there are only few cases using pyridazine-4,5-dicarboxylate (pda) as organic ligand [15], [16], [17]. In these rare reports, the pda ligand exhibits μ1–O, μ2–O: O′ and μ2–O coordination modes, respectively. And the nitrogen atoms of pyridazine moiety make no contribution. Inspired by the mixed organic ligand strategy and the inherent properties of pda, we introduced pda and 1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene (iimb) to built related coordination polymers.

The title complex is a neutral polymer with a two-dimensional bilayer structure. As illustrated in the figure, the asymmetric unit is comprised of one Cu(II) cation, one pda dianion, one iimb ligand and one lattice water molecule. Each Cu1 atom exhibits a tetragonal pyramidal configuration by two oxygen atoms (O1, O4#1) from two symmetry-related pda dianions, one nitrogen atom (N5#3) from another pda dianion and two nitrogen atoms (N1, N4#2) from two symmetry-related iimb ligands (symmetry codes: #1: −x, 2−y, 1−z; #2: x, 1+y, −1+z; #3: 1+x, y, z). In this [CuO2N3] unit, the basal plane is defined by O1, N1, N4#2 and N5#3, while the apical site is occupied by O4#1 atom. The Cu–O distances are 2.0226(13) Å and 2.2337(16) Å. The Cu–N distances range from 1.9772(17) Å to 2.0645(16) Å. And the average separation of Cu–O and Cu–N bonds are consistent with other reported data [18], [19], [20].

Every pda dianions adopt μ3–O: O′: N coordination mode and bind to three Cu(II) ions, which is distinct from those aforementioned examples. In this manner, the adjacent Cu atoms are propagated by the μ3-pda dianions to generate a double-strand chain structure along the a direction. These chains are further bridged by μ2-iimb molecules to form a two-dimensional bilayer structure lying in the ab plane. In the layer motifs, there are relative weak π–π stacking interactions between the benzene rings of iimb molecules with the centroid-centroid distance of 4.2898(2) Å.

Furthermore, there are two kinds of hydrogen-bonding interactions between the pda dianions and the unligated water molecules. For O1W–H1WA⋯N6#1, d = 3.061(2) Å, θ = 172.8°. And the values are 2.781(2) Å and 172.0° for O1W–H1WB⋯O2. Both hydrogen bonds participate in connecting discrete bilayers to create the final three-dimensional supramolecular structure.


Corresponding author: Guang-Zhen Liu, College of Chemistry and Chemical Engineering, LuoYang Normal University, Luoyang, Henan 471934, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXT. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

4. Rigaku, Oxford Diffraction Ltd. CrysAlispro; Rigaku: Abingdon, Oxfordshire, England, 2006.Search in Google Scholar

5. Hendon, C. H., Rieth, A. J., Korzyński, M. D., Dincă, M. Grand challenges and future opportunities for metal-organic frameworks. ACS Cent. Sci. 2017, 3, 554–563; https://doi.org/10.1021/acscentsci.7b00197.Search in Google Scholar PubMed PubMed Central

6. Qin, J. H., Huang, Y. D., Zhao, Y., Yang, X. G., Li, F. F., Wang, C., Ma, L. F. Highly dense packing of chromophoric linkers achievable in a pyrene-based metal-organic framework for photoelectric response. Inorg. Chem. 2019, 58, 15013–15016; https://doi.org/10.1021/acs.inorgchem.9b02203.Search in Google Scholar PubMed

7. Xin, L. Y., Liu, G. Z., Ma, L. F., Li, G. L., Wang, L. Y. Guest water-controlled reversible crystalline-to-amorphous transition and concomitant fluorescence shift in a polar open coordination polymer. Inorg. Chim. Acta. 2016, 443, 64–68; https://doi.org/10.1016/j.ica.2015.12.022.Search in Google Scholar

8. Sarma, D., Ramanujachary, K. V., Stock, N., Natarajan, S. High-throughput study of the Cu(CH3COO)2·H2O-5-nitroisophthalic acid-heterocyclic ligand system: synthesis, structure, magnetic, and heterogeneous catalytic studies of three copper nitroisophthalates. Cryst. Growth Des. 2011, 11, 1357–1369; https://doi.org/10.1021/cg1015934.Search in Google Scholar

9. Liu, G. Z., Li, S. H., Li, X. L., Xin, L. Y., Wang, L. Y. Three series of MOFs featuring various metal(II)-carboxylate chains cross-linked by dipyridyl-typed coligands: synthesis, structure, and solvent-dependent luminescence. CrystEngComm 2013, 15, 4571–4580; https://doi.org/10.1039/c3ce40109j.Search in Google Scholar

10. Li, D. P., Zhou, X. H., Liang, X. Q., Li, C. H., Chen, C., Liu, J., You, X. Z. Novel structural diversity of triazolate-based coordination polymers generated solvothermally with anions. Cryst. Growth Des. 2010, 10, 2136–2145; https://doi.org/10.1021/cg9012894.Search in Google Scholar

11. Soudani, S., Hajji, M., Mi, J. X., Jelsch, C., Lefebvre, F., Guerfel, T., Ben Nasr, C. Synthesis, structure and theoretical simulation of a Zinc(II) coordination complex with 2,3-pyridinedicarboxylate. J. Mol. Struct. 2020, 1199, 127015; https://doi.org/10.1016/j.molstruc.2019.127015.Search in Google Scholar

12. Wang, W. B., Wang, R. Y., Liu, L. N., Wu, B. L. Coordination frameworks containing magnetic single chain of imidazoledicarboxylate-bridged cobalt(II)/nickel(II): syntheses, structures, and magnetic properties. Cryst. Growth Des. 2018, 18, 3449–3457; https://doi.org/10.1021/acs.cgd.8b00174.Search in Google Scholar

13. Gavrikov, A. V., Efimov, N. N., Dobrokhotova, Z. V., Ilyukhin, A. B., Vasilyev, P. N., Novotortsev, V. M. Novel mononuclear Ln complexes with pyrazine-2-carboxylate and acetylacetonate Co-Ligands: remarkable single molecule magnet behavior of a Yb derivative. Dalton Trans. 2017, 46, 11806–11816; https://doi.org/10.1039/c7dt02175e.Search in Google Scholar PubMed

14. Wang, H., Gao, Y., Lü, L. Crystal structure of trans-diaqua-bis(1H-pyrazole-3-carboxylato-κ2N, O)manganese(II), C8H10N4O6Mn. Z. Kristallogr. NCS. 2018, 233, 77–78; https://doi.org/10.1515/ncrs-2017-0165.Search in Google Scholar

15. Liu, Y. Q., Luo, X. M., Jiang, H. J., Zhang, Z. Q. A water soluble zinc(II) coordination polymer containing pyridazine-4,5-dicarboxylic acid: the crystal structure and binding properties with DNA. Russ. J. Coord. Chem. 2018, 44, 317–321; https://doi.org/10.1134/s1070328418050032.Search in Google Scholar

16. Ju, F. Y., Ding, K. X., Liu, F. Crystal Structure of catena-poly[diaqua-(μ2-1,2-bis(4-pyridinyl)ethyane-κ2N:N′)-(μ2-pyridazine-4,5-dicarboxylato-κ2O:O′)]dizinc(II) dihydrate, C12H12ZnN3O6. Z. Kristallogr. NCS. 2019, 234, 567–569.Search in Google Scholar

17. Zhang, Z. Q., Xue, X. D., Yao, B. X., Ji, X., Jiang, H. J. 4-(4-Pyridyl) pyridinium pentaaqua(pyridazine-4,5-dicarboxylato)praseodymate(III). Acta Crystallogr. 2010, E66, m1288; https://doi.org/10.1107/s1600536810033477.Search in Google Scholar

18. Wang, Y. F., Tai, J. H., Yan, X. W., Zhao, M. Y., Wang, L. Y. Crystal structures and magnetic properties of two isomorphic frameworks based on 3-(1H-pyrazol-4-yl)-5-(pyridin-2-yl)-1,2,4-triazole and 1,2,4,5-benzenetetracarboxylic acid. Chin. J. Inorg. Chem. 2018, 34, 1121–1126.Search in Google Scholar

19. Li, G. L., Liu, G. Z., Huang, L. L., Li, Z. X. A novel 3D Cu(II) coordination polymer containing mixed ligands: synthesis, crystal structure and properties. Chin. J. Struct. Chem. 2014, 33, 942–946.Search in Google Scholar

20. Kang, H. X., Fu, Y. Q., Xin, L. Y., Li, G. L., Ma, L. F., Liu, G. Z. Two coordination polymers containing linear Co(II)-trinuclear and Cu(II)-chain assembled from 4-fluorocinnamic acid and N-donor ligand. Chin. J. Struct. Chem. 2016, 35, 286–292.Search in Google Scholar

Received: 2022-03-07
Accepted: 2022-05-05
Published Online: 2022-05-20
Published in Print: 2022-08-26

© 2022 Guang-Zhen Liu et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.