Zhao Mei-Li and Tai Xi-Shi*

The crystal structure of phenantroline-κ²N,N′-bis(6-phenylpyridine-2-carboxylato-κ²N,O) copper(II), C₃₆H₂₄N₄O₄Cu

https://doi.org/10.1515/ncrs-2022-0121
Received March 12, 2022; accepted April 19, 2022; published online April 29, 2022

Abstract
C₃₆H₂₄N₄O₄Cu, monoclinic, I₂/a (no. 15), a = 16.5119(17) Å, b = 11.0747(7) Å, c = 17.6272(17) Å, β = 117.916(13)°, V = 2848.3(5) Å³, Z = 4, Rgt(F) = 0.0335, wRref(F²) = 0.0759, T = 200 K.

CCDC no.: 2167383

The crystal structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

*Corresponding author: Tai Xi-Shi, College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061, P. R. China, E-mail: taixs@wfu.edu.cn. https://orcid.org/0000-0002-0050-1900
Zhao Mei-Li, College of Chemistry and Chemical Engineering, Weifang University, Weifang, Shandong 261061, P. R. China

Table 1: Data collection and handling.

Crystal:	Ble block
Size:	0.13 × 0.12 × 0.1 mm
Wavelength:	Mo Kα radiation (0.71073 Å) 0.82 mm⁻¹
Diffractometer, scan mode:	SuperNova, ω-scans
θmax, completeness:	25°, >99%
n(hkl)measured, N(hkl)unique, Rint:	5858, 2513, 0.028
Criterion for Iobs, N(hkl)gt:	Iobs > 2σ(Iobs), 2156
N(param)refined:	204
Programs:	Bruker programs [1], OLEX2 [2], SHELX [3], CrysAlisPRO [4]

Source of materials

Synthesis of phenantroline-κ²N,N′-bis(6-phenylpyridine-2-carboxylate-κ²N,O)copper(II): a solution of Cu(CH₃COO)₂.H₂O (100 mg, 0.5 mmol) in 5 mL distilled water was added to the solution of 6-phenylpyridine-2-carboxylic
Experimental details

The hydrogen atoms were positioned geometrically (C–H = 0.93 Å). Their \(U_{iso} \) values were set to 1.2\(U_{eq} \) of the parent atoms.

Comment

Pyridine carboxylic acid or 1,10-phenanthroline and their derivatives were widely used to construct metal complexes owing to their abilities to form stable chelates [5]. And their metal complexes exhibited a wide range of potential applications including magnetic properties [6], neurotropic activity [7], fluorescence sensor [8], antimicrobial properties [9], and catalytic activity [10]. We have previously published some metal complexes of Co(II), Cu(II), Zn(II) and Pb(II) with 6-phenylpyridine-2-carboxylic acid as a bidentate primary ligand [11–16]. Continuing to enrich our studies on the synthesis of transition metal complexes using pyridine carboxylic acid derivative ligands, herein we used 6-phenylpyridine-2-carboxylic acid and 1,10-phenanthroline as excellent starting materials to construct a new Cu(II) complex.

The molecular structure is given in Figure 1. The Cu(II) complex contains a Cu(II) ion, two 6-phenylpyridine-2-carboxylate ligands and one neutral 1,10-phenanthroline ligand. The asymmetric unit is one half of a complex located on a twofold axis. The Cu(II) ion forms a distorted octahedral six-coordination geometry by coordinating to two N atoms (N1 and N1a) and two O atoms (O2 and O2a) of two 6-phenylpyridine-2-carboxylate ligands, and two N atoms (N2 and N2a) from one 1,10-phenanthroline ligand. The bond angle of both O2–Cu1–N2 and O2a–Cu1–N2a are 173.26(7)°, showing that O2 and N2 (or O2a and N2a) atoms located on the axial position, and other four atoms (O2a, N1, N2a and N1a, or O2, N1, N2 and N1a) located on the equatorial plane. The Cu–N and Cu–O bond distances are 2.0154(18) Å (Cu1–N2), 2.0155(17) Å (Cu1–N2a), 2.4418(18) Å (Cu1–N1), 2.4418(17) Å (Cu1–N1a), 1.9615(15) Å (Cu1–O2 and Cu1–O2a), respectively, which agrees with the reports [12, 15]. The complex molecules are further interconnected by \(\pi-\pi \) interaction of neighboring aromatic rings to form the 3D network structure.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This project was supported by the National Natural Science Foundation of China (No. 21171132), the Natural Science Foundation of Shandong (ZR2014BL003), the Project of Shandong Province Higher Educational Science and Technology Program (J14LC01) and Science Foundation of Weifang.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References
