Crystal structure of chlorido-(η⁶-toluene) (5,5’-dimethyl-2,2’-bipyridine-κ²N,N’) ruthenium(II) hexafluoridophosphate(V) – acetone (1/1) C₂₂H₂₆ClN₂ORuPF₆

Abstract
C₂₂H₂₆ClN₂ORuPF₆, triclinic, P̅1 (no. 2), a = 10.2106(4) Å, b = 10.8139(4) Å, c = 11.1963(4) Å, α = 93.765(2)°, β = 90.418(1)°, γ = 94.324(2)°, V = 1229.98(8) Å³, Z = 2, Rgt(F) = 0.0251, wRref(F²) = 0.0683, T = 100 K.

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

To a solution of [(η⁶-toluene)Ru(μ-Cl)Cl]₂ (0.2 mmol) in acetonitrile (20 mL) was added 5,5-dimethyl-2,2’-bipyridine (0.42 mmol). The mixture was stirred for 3 h followed by the reduction in the volume of the solvent in vacuo to about (10 mL) before adding NH₄PF₆ (0.42 mmol) and then cooled in an ice bath while stirring for 2 h leading to a precipitate which was collected by filtration. The filtrate was washed with diethyl ether and dried in vacuo. Crystals were grown by layering an acetone solution with hexane and left undisturbed for 2 days. Orange yellow, yield 84%, m.p. 189°C (decomp).

1H NMR (400 MHz, DMSO-d₆) δ ppm = 9.37 (s, 2H, Py); 8.45 (d, J_HH = 8.32 Hz, 2H, Py); 8.08 (t, J_HHH = 6.8 Hz, 2H, Py); 6.33 (t, J_HHH = 6.08 Hz, 2H, Arene); 5.95 (t, J_HHH = 5.68 Hz, 1H, Arene); 5.79 (t, J_HHH = 5.68 Hz, 2H, Arene); 2.51 (s, 6H, Me), 2.23 (s, 3H, Me-Toluene), 13C NMR (400 MHz, DMSO-d₆) δ ppm = 155.82 (Py), 154.53 (Py), 127.40 (Py); 123.65 (Py); 105.88 (Ar); 90.54 (Ar); 82.94 (Ar); 79.74 (Ar); 23.21 (Me); 18.74 (Me). MS (ESI, m/z): 413.04 [C₁₀H₂₀ClN₂Ru]+.

Experimental details

A Bruker APEX2 diffractometer was used for crystal evaluation and data collection [1]. The structure was
We wish to extend our sincere thanks to

solved by the direct method using the SHELXS [2] program and refined. The visual crystal structure information was performed using Mercury [3] system software. All non-hydrogen atoms were refined isotropically and then by anisotropic refinement using SHELXL [4].

Comment

Half-sandwich complexes are versatile and highly modifiable organometallics, which contain a r-bonded neutral arene or negatively charged cyclopentadienyl ligand, and, usually, one monodentate and one bidentate ligand. The monodentate and bidentate ligands allow further structural and electronic control of reactivity, including the incorporation of bio-active moieties [5–7]. The complexes have found application as good catalysts in transfer hydrogenation and aerobic alcohol oxidation [5–8]. In addition, the complexes have found biological applications as anticancer agents and antibacterial agents [5].

The asymmetric unit of the title structure contains one cationic ruthenium complex and one [PF_6]^- anion. The cationic ruthenium(II) complex possesses a piano stool geometry, where the chelating ligand and the chlorido ligand occupy the position of three legs of a piano-stool and the arene ring occupies the remaining coordination sites as the seat of the stool [9–16]. The Ru–N bond lengths are 2.091(1) and 2.087(1) Å. These distances are comparable to those reported for other arene ruthenium complexes with N,N'-donor ligands [9–15]. The N–Ru–N bond angle was derived to be 76.96(6)°. The N–Ru–Cl bond angles are 82.65(4)° and 84.96(4)°. These values were close to those reported for related compounds [9–15]. All C–C, C–N and P–F bond lengths and angles are in the expected range. Non-classical intermolecular hydrogen bonds were found in the crystal packing of the title compound.

Acknowledgments: We wish to extend our sincere thanks to the NRF and UKZN (URF) for financial support. Gichumbi, M. Joel thanks Chuka University for the research visit leave.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: NRF and UKZN (URF).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References