Cuiya Zhang, Xiaojuan Han and Wenqiang Tang*

Crystal structure of (2-((4-bromo-2,6-dichlorophenyl)amino)phenyl) (morpholino) methanone, C$_{17}$H$_{15}$BrCl$_2$N$_2$O$_2$

Abstract

C$_{17}$H$_{15}$BrCl$_2$N$_2$O$_2$, monoclinic, $P2_1/c$ (no. 14), $a = 20.333(7)$ Å, $b = 11.226(5)$ Å, $c = 7.843(3)$ Å, $\beta = 99.651(8)$ °, $V = 1764.8(12)$ Å3, $Z = 4$, $R_{gt}(F) = 0.0464$, $wR_{ref}(F^2) = 0.1601$, $T = 173$ K.

CCDC no.: 2265170

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

1 Source of materials

A mixture of 2-((4-bromo-2,6-dichlorophenyl)amino)benzoic acid (3.59 g, 10 mmol), morpholine (1.11 g, 13 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) (4.18 g, 11 mmol) and N,N-diisopropylethylamine (2.58 g, 20 mmol) was dissolved in N,N-dimethylformamide (20 mL). The mixture was stirred for 3 h at room temperature, until the TLC indicated the reaction was completed. The mixture was diluted with brine, and then extracted with ethyl acetate (3 × 30 mL). The organic phase was washed with brine (30 mL), dried with anhydrous sodium sulfate, and then concentrated under pressure. The title compound was separated by silica-gel column chromatography with ethyl acetate-petroleum ether (30 %) gradient solvent system. The target product was obtained as a white solid. Yield: 83.8 %.

2 Experimental details

All hydrogen atoms were placed in idealized positions. Their U_{iso} values were set to 1.2 U_{eq} of the parent atoms. The structure was solved using ShelXT [2] and refined using ShelXL [3] in Olex2 software [4].

3 Comment

Morpholine derivatives find wide applications in the field of medicinal chemistry as a key scaffold for the development of various drugs. In addition, these derivatives are used as important building blocks for the synthesis of heterocyclic compounds with various biological activities, as highlighted in recent academic publications [5, 6]. In this study, a novel morpholine derivative was synthesized and characterized by obtaining its single-crystal structure, providing valuable insights for solid-state properties and potential applications.

https://doi.org/10.1515/ncrs-2023-0251

Received May 26, 2023; accepted June 26, 2023; published online July 7, 2023

*Corresponding author: Wenqiang Tang, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China, E-mail: twqsxcq@163.com. https://orcid.org/0000-0001-5150-4549

Cuiya Zhang and Xiaojuan Han, Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang, Shaanxi, China

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
interactions, similar to structures reported in literatures [10–13].

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Key breeding program by collaborative innovation center of green manufacturing technology for traditional Chinese medicine in Shaanxi province (2019XT-05), key laboratory of molecular imaging and drug synthesis of Xiangyang city (2021QXNL–PT-0008) and effective substances of traditional Chinese medicine innovative team in Shaanxi institute of international trade & commerce (SSY18TD01).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

11. Anuradha N., Thiruvalluvar A., Mahalinga A., Butcher R. J. 5–Methyl-1-[(trifluoromethyl) quinolin-4-yl]-1H-1,2,3-triazol-4-yl](morpholinomethyl)methane. Acta Crystallogr. 2008, E64, o2375.