Rong Huang, Zhen Yao and Ying Zhou*

Crystal structure of ethyl 2-(3-benzyl-4-oxo-3,4-dihydrophthalazin-1-yl)- 2,2-difluoroacetate, C\textsubscript{19}H\textsubscript{16}F\textsubscript{2}N\textsubscript{2}O\textsubscript{3}

https://doi.org/10.1515/ncrs-2024-0091
Received February 26, 2024; accepted March 20, 2024; published online April 5, 2024

Abstract

C\textsubscript{19}H\textsubscript{16}F\textsubscript{2}N\textsubscript{2}O\textsubscript{3}, monoclinic, P\textsubscript{2}1\textsubscript{1}/c (no. 14), a = 17.5688(15) Å, b = 13.8304(11) Å, c = 7.0600(7) Å, \(\beta = 100.254(3)^\circ\), \(V = 1688.1(3)\) Å3, \(Z = 4\), \(R_{\text{gt}}(F) = 0.0516\), \(wR_{\text{ref}}(F^2) = 0.1424\), \(T = 200(2)\) K.

CCDC no.: 1942854

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

1 Source of material

To an oven-dried Schlenk tube equipped with a magnetic stir bar were sequentially added phenylhydrazine (21.6 mg, 0.2 mmol), 2-formylbenzoic acid (30.0 mg, 0.2 mmol), ethyl 2-bromo-2,2-difluoroacetate (100.9 mg, 0.5 mmol), fac-[Ir(ppy)\textsubscript{3}] (1.3 mg, 1.0 mol%), DBU (30.4 mg, 0.2 mmol) and THF (2.0 mL). After being degassed and refilled with nitrogen three times, the tube was sealed, and the reaction mixture was stirred under 10 W blue LED irradiation at room temperature for 30 h. After that, the solvent was removed by vacuum evaporation, and the crude residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexanes (1:10 to 1:8) to give the desired product.

2 Experimental details

The carbon-bound hydrogen atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms.

3 Comment

Nitrogen-containing heterocyclic compounds are widely distributed in nature and play an important role in...
pharmacological studies have shown that dihydrophthalazine derivatives have biological activities [5–7]. Therefore, researchers are increasingly interested in efficient methods for synthesizing dihydrophthalazine compounds.

The title compound has one carbonyl group, one ester group and difluoromethyl. The bond lengths and angles which were derived from the title structure are within normal ranges [8, 9]. The carbonyl group was determined at the distance of 1.224(2) Å (C3=O1). The ester group was 1.321(2) Å (C3=O2), 1.190(2) Å (C5=O2). The methylene dioxygen groups were 1.356(2) Å (C4=F1), 1.367(2) Å (C4=F2).

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Competing interests: The authors declare no conflicts of interest regarding this article.

Research funding: This work was supported by the National Natural Science Foundation of China (22368018).

References

5. Cai X., Song X., Zhu Q., Fan X., Zhang X. Concise synthesis of spirocyclic dihydrophthalazines through spiroannulation reactions of aryl azomethine groups were 1.356(2) Å (C4=O1). The ester group was 1.321(2) Å (C3=O2), 1.190(2) Å (C5=O2). The methylene dioxygen groups were 1.356(2) Å (C4=F1), 1.367(2) Å (C4=F2).

References