Accessible Requires Authentication Published by De Gruyter December 5, 2019

Synapses: Multitasking Global Players in the Brain

Joachim H. R. Lübke ORCID logo and Astrid Rollenhagen
From the journal Neuroforum


Synapses are key elements in the communication between neurons in any given network of the normal adult, developmental and pathologically altered brain. Synapses are composed of nearly the same structural subelements: a presynaptic terminal containing mitochondria with an ultrastructurally visible density at the pre- and postsynaptic apposition zone. The presynaptic density is composed of a cocktail of various synaptic proteins involved in the binding, priming and docking of synaptic vesicles inducing synaptic transmission. Individual presynaptic terminals (synaptic boutons) contain a couple of hundred up to thousands of synaptic vesicles. The pre- and postsynaptic densities are separated by a synaptic cleft. The postsynaptic density, also containing various synaptic proteins and more importantly various neurotransmitter receptors and their subunits specifically composed and arranged at individual synaptic complexes, reside at the target structures of the presynaptic boutons that could be somata, dendrites, spines or initial segments of axons.

Beside the importance of the network in which synapses are integrated, their individual structural composition critically determines the dynamic properties within a given connection or the computations of the entire network, in particular, the number, size and shape of the active zone, the structural equivalent to a functional neurotransmitter release site, together with the size and organization of the three functionally defined pools of synaptic vesicles, namely the readily releasable, the recycling and the resting pool, are important structural subelements governing the ‘behavior’ of synaptic complexes within a given network such as the cortical column.

In the late last century, neuroscientists started to generate quantitative 3D-models of synaptic boutons and their target structures that is one possible way to correlate structure with function, thus allowing reliable predictions about their function. The re-introduction of electron microscopy (EM) as an important tool achieved by modern high-end, high-resolution transmission-EM, focused ion beam scanning-EM, CRYO-EM and EM-tomography have enormously improved our knowledge about the synaptic organization of the brain not only in various animal species, but also allowed new insights in the ‘microcosms’ of the human brain in health and disease.


Synapsen sind Schlüsselelemente der Kommunikation zwischen Neuronen in jedem beliebigen Netzwerk des normal adulten, sich entwickelnden, bzw. krankhaft veränderten Gehirns. Synapsen sind nahezu aus den gleichen strukturellen Subelementen aufgebaut: einem präsynaptischen Element, welches Mitochondrien und eine ultrastrukturell sichtbare Proteinverdichtung der Membran mit einem Cocktail verschiedener synaptischer Proteine enthält, welche für die Bindung‚ das „Priming“ und das Andocken synaptischer Vesikel verantwortlich sind. Das präsynaptische Terminal (synaptischer Bouton) kann einige hundert bis zu einigen tausend synaptische Vesikel enthalten. Die präsynaptische Seite ist durch den synaptischen Spalt von der postsynaptischen Dichte der Zielstruktur getrennt, die entweder Somata, Dendriten, dendritische „Spines“ oder Axoninitialsegmente darstellen. Die postsynaptische Dichte enthält wiederum spezifische synaptische Proteine, aber noch wichtiger verschiedene Neurotransmitter-Rezeptoren und deren Untereinheiten, die je nach Synapsentyp individuell komponiert und arrangiert sind.

Zum Ende des letzten Jahrhunderts wurde begonnen quantitative 3D-Modelle synaptischer Boutons und deren Zielstrukturen zu generieren, welches eine Möglichkeit darstellt korrelierte Struktur/Funktions-Beziehungen herzustellen. In anderen Worten: erlaubt die strukturelle Komposition von Synapsen verlässliche Voraussagen zu ihrer Funktion?

Die „Wiederentdeckung“ der Elektronmikroskopie (EM) als ein wichtiges Instrument hat mittels hochmoderner, hochauflösender Transmission-EM, der Einführung der „Focused Ion Beam Scanning-EM“ Technologie, die Etablierung von CRYO-EM sowie EM-Tomographie zu einem enormen Erkenntnisgewinn der synaptischen Organisation in verschiedenen Tiermodellen, aber auch zu neuen Erkenntnissen im „Mikrokosmos“ des gesunden und erkrankten menschlichen Gehirns geführt.


The authors are very grateful to all past and present members of the Group ‘Structure of Synapses’ at the INM-10 and INM-2, Research Centre Jülich GmbH for their individual contributions that made this review possible. We would also like to thank our collaborator Dr. Mike Hasenberg and his team at the IMCES Electron Microscopy Unit (EMU), Medical Research Centre, University Hospital Essen for their constant support with FIB-SEM and EM tomography. Finally, many thanks to Dr. Dorothea Miller and Priv. Doz. Dr. Marec von Lehe, Department of Neurosurgery, Knappschaftskrankenhaus Bochum and Brandenburg Medical School, Ruppiner Clinics, Neuruppin for providing the human tissue samples. Finally, the funding by the Helmholtz-Society and Deutsche Forschungsgemeinschaft is very much acknowledged.


Alle, H., and Geiger, J.R. (2006). Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293. Search in Google Scholar

Allen, N.J. (2014). Astrocyte regulation of synaptic behavior. Ann Rev Cell Dev Biol 30, 439–463. Search in Google Scholar

Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J.R., and DeFelipe, J. (2008). Gender differences in human cortical synaptic density. Proc Natl Acad Sci USA 105, 14615–14619. Search in Google Scholar

Anderson, J.C., and Martin, K.A.C. (2006). Synaptic connections from cortical areas V1 and V2 in macaque monkey. J Comp Neurol 495, 709–721. Search in Google Scholar

Anderson, J.C., and Martin, K.A.C. (2009). The synaptic connections between cortical area V4 to V2 in macaque monkey. J Neurosci 29, 11283–11293. Search in Google Scholar

Bertram, R., Smith, G.D., and Sherman, A. (1999). Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys J 76, 735–750. Search in Google Scholar

Biro, A.A., Holderith, N.B., and Nusser, Z. (2005). Quantal size is independent of the release probability at hippocampal excitatory synapses. J Neurosci 25, 223–232. Search in Google Scholar

Bischofberger, J., and Jonas, P. (2002). TwoB or not twoB: differential transmission at glutamatergic mossy fiber-interneuron synapses in the hippocampus. Trends Neurosci 25, 600–603. Search in Google Scholar

Blazquez-Llorca, L., Merchan-Perez, A., Rodriguez, J.R., Gascon, J., and DeFelipe, J. (2013). FIB/SEM technology and Alzheimer’s disease: three-dimensional analysis of human cortical synapses. J Alzheimers Dis 34, 995–1013 Search in Google Scholar

Bollmann, J.H., Sakmann, B., and Borst, J.G. (2000). Calcium sensitivity of glutamate release in the calyx-type terminal. Science 289, 953–957. Search in Google Scholar

Bopp, R., Holler-Rickauer, S., Martin, K.A., and Schuhknecht, G.F. (2017). An Ultrastructural Study of the Thalamic Input to Layer 4 of Primary Motor and Primary Somatosensory Cortex in the Mouse. J Neurosci 37, 2435–2448. Search in Google Scholar

Borst, J.G., and Sakmann, B. (1996). Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434. Search in Google Scholar

Borst, J.G., and Sakmann, B. (1998). Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 506, 143–157. Search in Google Scholar

Borst, J.G., and Sakmann, B. (1999). Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem. J Physiol 521, 123–133. Search in Google Scholar

Chamberland, S., and Toth, K. (2016). Functionally heterogeneous synaptic vesicle pools support diverse synaptic signalling. J Physiol 594, 825–835. Search in Google Scholar

Chicurel, M.E., and Harris, K.M. (1992). Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325, 169–182. Search in Google Scholar

Dallerac, G., Zapata, J., and Rouach, N. (2018). Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 19, 729–743. Search in Google Scholar

Dufour, A., Rollenhagen, A., Sätzler, K., and Lübke, J.H.R. (2016). Development of Synaptic Boutons in Layer 4 of the Barrel Field of the Rat Somatosensory Cortex: A Quantitative Analysis. Cereb Cortex 26, 838–854. Search in Google Scholar

Engel, D., and Jonas, P. (2005). Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45, 405–417. Search in Google Scholar

Feldmeyer, D. (2012). Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 6, 24 doi: 10.3389/fnana.2012.00024. eCollection 2012. Search in Google Scholar

Feldmeyer, D., Brecht, M., Helmchen, F., Petersen, C.C., Poulet, J.F., Staiger, J.F., Luhmann, H.J., and Schwarz, C. (2013). Barrel cortex function. Prog Neurobiol 103, 3–27. Search in Google Scholar

Freche, D., Pannasch, U., Rouach, N., and Holcman, D. (2011) Synapse geometry and receptor dynamics modulate synaptic strength. PLoS One 6, e25122. Doi 10.137/journal.pone.0025122. Search in Google Scholar

Freese, J.L., and Amaral, D.G. (2006) The synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 496, 655–667. Search in Google Scholar

Geiger, J.R., and Jonas, P. (2000). Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28, 927–939. Search in Google Scholar

Hallermann, S., Pawlu, C., Jonas, P., and Heckmann, M. (2003). A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc Natl Acad Sci USA 100, 8975–8980. Search in Google Scholar

Harris, K.M., and Sultan, P. (1995). Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34, 1387–1395. Search in Google Scholar

Helmchen, F., Borst, J.G., and Sakmann, B. (1997). Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72, 1458–1471. Search in Google Scholar

Henze, D.A., Card, J.P., Barrionuevo, G., and Ben-Ari, Y. (1997). Large amplitude miniature excitatory postsynaptic currents in hippocampal CA3 pyramidal neurons are of mossy fiber origin. J Neurophysiol. 77, 1075–1086. Search in Google Scholar

Holderith, N., Lorincz, A., Katona, G., Rozsa, B., Kulik, A., Watanabe, M., and Nusser, Z. (2016). Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 19, 172. Search in Google Scholar

Holtmaat, A., Wilbrecht, L., Knott, G.W., Welker, E., and Svoboda, K. (2006). Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983. Search in Google Scholar

Hsu, A., Luebke, J.I., and Medalla, M. (2017). Comparative ultrastructural features of excitatory synapses in the visual and frontal cortices of the adult mouse and monkey. J Comp Neurol 525,2175–2191. Search in Google Scholar

Imig, C., Min, S.W., Krinner, S., Arancillo, M., Rosenmund, C., Südhof, T.C., Rhee, J., Brose, N., and Cooper, B.H. (2014). The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron 84, 416–431. Search in Google Scholar

Knott, G., and Holtmaat, A. (2008). Dendritic spine plasticity--current understanding from in vivo studies. Brain Res Rev. 58; 282–289. doi: 10.1016/j.brainresrev.01.002. Search in Google Scholar

Liu, X.B., and Schumann, C.M. (2014). Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections. Acta Neuropathol Commun 2, 42. Search in Google Scholar

Lübke, J., and Feldmeyer, D. (2007). Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212, 3–17. Search in Google Scholar

Marrone, D.F., LeBoutillier, J.C., and Petit, T.L. (2005). Ultrastructural correlates of vesicular docking in the rat dentate gyrus. Neurosci Lett 378, 92–97. Search in Google Scholar

Medalla, M., and Luebke, J.I. (2015). Diversity of glutamatergic synaptic strength in lateral prefrontal versus primary visual cortices in the rhesus monkey. J Neurosci 35, 112–127. doi: 10.1523/JNEUROSCI.3426-14.2015. Search in Google Scholar

Meinrenken, C.J., Borst, J.G., and Sakmann, B. (2002). Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci 22, 1648–1667. Search in Google Scholar

Meinrenken, C.J., Borst, J.G., and Sakmann, B. (2003). Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 547, 665–689. Search in Google Scholar

Michanski, S., Smaluch, K., Steyer, A.M., Chakrabarti, R., Setz, C., Oestreicher, D., Fischer, C., Mobius, W., Moser, T., Vogl, C., et al. (2019). Mapping developmental maturation of inner hair cell ribbon synapses in the apical mouse cochlea. Proc Natl Acad Sci USA 116, 6415–6424. Search in Google Scholar

Min,R.,and Nevian,T. (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15, 746–753. Search in Google Scholar

Mohan, H., Verhoog, M.B., Doreswamy, K.K., Eyal, G., Aardse, R., Lodder, B.N., Goriounova, N.A., Asamoah, B., AB, B.B., Groot, C., et al. (2015). Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex. Cereb Cortex 25, 4839–4853. Search in Google Scholar

Molnar, G., Rozsa, M., Baka, J., Holderith, N., Barzo, P., Nusser, Z., and Tamas, G. (2016). Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles. eLIFE 5. Search in Google Scholar

Morales, J., Benavides-Piccione, R., Dar, M., Fernaud, I., Rodríguez, A., Anton-Sanchez, L., Bielza, C., Larrañaga, P., DeFelipe, J., and Yuste, R. (2014). Random positions of dendritic spines in human cerebral cortex. J Neurosci. 34, 10078–10084. doi: 10.1523/JNEUROSCI.1085-14.2014. Search in Google Scholar

Moser, T., Brandt, A., and Lysakowski, A. (2006). Hair cell ribbon synapses. Cell Tissue Res 326, 347–359. Search in Google Scholar

Müller, J., Reyes-Haro, D., Pivneva, T., Nolte, C., Schaette, R., Lübke, J., and Kettenmann, H. (2009). The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J Gen Physiol 134, 115–127. Search in Google Scholar

Navarrete, M., Perea, G., Maglio, L., Pastor, J., Garcia de Sola, R., and Araque, A. (2013). Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb Cortex 23, 1240–1246. Search in Google Scholar

Neher, E. (2015). Merits and Limitations of Vesicle Pool Models in View of Heterogeneous Populations of Synaptic Vesicles. Neuron 87, 1131–1142. Search in Google Scholar

Nicol, M.J., and Walmsley, B. (2002). Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. J Physiol 539, 713–723. Search in Google Scholar

Plitzko, JM, Rigort, A, and Leis, A. (2009) Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Curr Opin Biotechnol 20, 83–89. Search in Google Scholar

Qi, G., Radnikow, G., and Feldmeyer, D. (2015). Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. J Vis Exp, 52358. Search in Google Scholar

Radnikow, G., and Feldmeyer, D. (2018). Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. Front Neuroanat 12, 1. Search in Google Scholar

Rizzoli, S. O., and Betz, W.J. (2005). Synaptic vesicle pools. Nat Rev Neurosci. 6:57–69. Search in Google Scholar

Rodriguez-Moreno, J., Rollenhagen, A., Arlandis, J., Santuy, A., Merchan-Perez, A., DeFelipe, J., Lübke, J.H.R., and Clasca, F. (2018). Quantitative 3D Ultrastructure of Thalamocortical Synapses from the “Lemniscal” Ventral Posteromedial Nucleus in Mouse Barrel Cortex. Cereb Cortex 28, 3159–3175. Search in Google Scholar

Rollenhagen, A., Sätzler, K., Rodriguez, E.P., Jonas, P., Frotscher, M., and Lübke, J.H.R. (2007). Structural determinants of transmission at large hippocampal mossy fiber synapses. J Neurosci 27, 10434–10444. Search in Google Scholar

Rollenhagen, A., Klook, K., Sätzler, K., Qi, G., Anstötz, M., Feldmeyer, D., and Lübke, J.H.R. (2015). Structural determinants underlying the high efficacy of synaptic transmission and plasticity at synaptic boutons in layer 4 of the adult rat ‘barrel cortex’. Brain Struct Funct 220, 3185–3209. Search in Google Scholar

Rollenhagen, A., Ohana, O., Sätzler, K., Hilgetag, C.C., Kuhl, D., and Lübke, J.H.R. (2018). Structural Properties of Synaptic Transmission and Temporal Dynamics at Excitatory Layer 5B Synapses in the Adult Rat Somatosensory Cortex. Front Synaptic Neurosci 10, 24. Search in Google Scholar

Rowland, K.C., Irby, N.K., and Spirou, G.A. (2000). Specialized synapse-associated structures within the calyx of Held. J Neurosci 20, 9135–9144. Search in Google Scholar

Sätzler, K., Söhl, L.F., Bollmann, J.H., Borst, J.G., Frotscher, M., Sakmann, B., and Lübke, J.H.R. (2002). Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 22, 10567–10579. Search in Google Scholar

Saviane, C., and Silver, R.A. (2006). Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987. Search in Google Scholar

Schikorski, T., and Stevens, C.F. (1997). Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17, 5858–5867. Search in Google Scholar

Schikorski, T., and Stevens, C.F. (1999). Quantitative fine-structural analysis of olfactory cortical synapses. Proc Natl Acad Sci USA 96, 4107–4112. Search in Google Scholar

Schikorski, T., and Stevens C.F. (2001). Morphological correlates of functionally defined synaptic vesicle populations. Nat Neurosci. 4, 391–395. Search in Google Scholar

Schneggenburger, R., Meyer, A.C., and Neher, E. (1999). Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23, 399–409. Search in Google Scholar

Schneggenburger, R., and Neher, E. (2000). Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893. Search in Google Scholar

Schneggenburger, R., Sakaba, T., and Neher, E. (2002). Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25, 206–212. Search in Google Scholar

Seeman, S.C., Campagnola, L., Davoudian, P.A., Hoggarth, A., Hage, T.A., Bosma-Moody, A., Baker, C.A., Lee, J.H., Mihalas, S., Teeter, C., et al. (2018). Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex. eLIFE 7. Search in Google Scholar

Sikora, M.A., Gottesman, J., and Miller, R.F. (2005). A computational model of the ribbon synapse. J Neurosci Methods 145, 47–61. Search in Google Scholar

Silver, R.A., Lübke, J., Sakmann, B., and Feldmeyer, D. (2003). High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984. Search in Google Scholar

Sorra, K.E., and Harris, K.M. (1993). Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J Neurosci 13, 3736–3748. Search in Google Scholar

Spacek, J., and Harris, K.M. (1998). Three-dimensional organization of cell adhesion junctions at synapses and dendritic spines in area CA1 of the rat hippocampus. J Comp Neurol 393, 58–68. Search in Google Scholar

Studer, D., Zhao, S., Chai, X., Jonas, P., Graber, W., Nestel, S., and Frotscher, M. (2014). Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nat Protoc 9, 1480–1495. Search in Google Scholar

Szabadics, J., Varga, C., Molnar, G., Olah, S., Barzo, P., and Tamas, G. (2006). Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235. Search in Google Scholar

Takahashi, T., Forsythe, I.D., Tsujimoto, T., Barnes-Davies, M., and Onodera, K. (1996). Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274, 594–597. Search in Google Scholar

Vaden, J.H., Banumurthy, G., Gusarevich, E.S., Overstreet-Wadiche, L., and Wadiche, J.I. (2019). The readily-releasable pool dynamically regulates multivesicular release. eLIFE 8. Search in Google Scholar

Verstreken, P., Ly, C.V., Venken, K.J., Koh, T.W., Zhou, Y., and Bellen, H.J. (2005). Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378. Search in Google Scholar

Verstreken, P., Ohyama, T., and Bellen, H.J. (2008). FM 1–43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol Biol.440, 349–69. doi: 10.1007/978-1-59745-178-926. Search in Google Scholar

von Gersdorff, H., and Borst, J.G. (2002). Short-term plasticity at the calyx of Held. Nat Rev Neurosci 3, 53–64. Search in Google Scholar

Wimmer, V.C., Horstmann, H., Groh, A., and Kuner, T. (2006). Donut-like topology of synaptic vesicles with a central cluster of mitochondria wrapped into membrane protrusions: a novel structure-function module of the adult calyx of Held. J Neurosci 26, 109–116. Search in Google Scholar

Xu-Friedman, M.A., Harris, K.M., and Regehr, W.G. (2001). Threedimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21, 6666–6672. Search in Google Scholar

Xu-Friedman, M.A., and Regehr, W.G. (2003). Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J Neurosci 23, 2182–2192. Search in Google Scholar

Yakoubi, R., Rollenhagen, A., von Lehe, M., Shao, Y., Sätzler, K., and Lübke, J.H.R. (2019a). Quantitative Three-Dimensional Reconstructions of Excitatory Synaptic Boutons in Layer 5 of the Adult Human Temporal Lobe Neocortex: A Fine-Scale Electron Microscopic Analysis. Cereb Cortex. 29, 2797–2814, doi: 10.1093/cercor/bhy146. Search in Google Scholar

Yakoubi, R., Rollenhagen, A., von Lehe, M., Miller D., Walkenfort, B., Hasenberg, M., Sätzler, K., and Lübke, JHR. (2019b). Ultrastructural heterogeneity of human layer 4 excitatory synaptic boutons in the adult temporal lobe neocortex. Program No. 037.01. 2019 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2019. Online. Search in Google Scholar

Yamada, W.M., and Zucker, R.S. (1992). Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys J 61, 671–682. Search in Google Scholar

Published Online: 2019-12-05
Published in Print: 2020-02-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston